Social Network Analysis

#4 Degree centrality

© 2020 T. Erseghe

What is centrality?

Centrality

From Wikipedia, the free encyclopedia

In graph theory and network analysis, indicators of **centrality** identify the most important vertices within a graph. Applications include identifying the most influential person(s) in a social network, key infrastructure nodes in the Internet or urban networks, and super-spreaders of disease. Centrality concepts were first developed in social network analysis, and many of the terms used to measure centrality reflect their sociological origin.^[1]

Degree centrality [edit]

Main article: Degree (graph theory)

PageRank centrality [edit]

Main article: PageRank

Betweenness centrality [edit]

Main article: Betweenness centrality

Eigenvector centrality [edit]

Main article: Eigenvector centrality

Closeness centrality [edit]

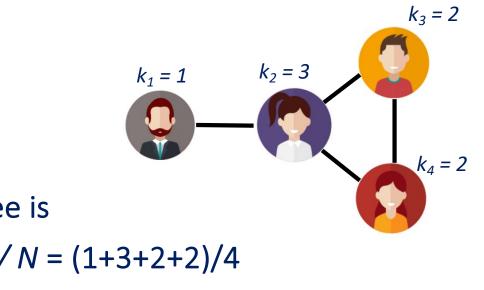
Main article: Closeness centrality 2

MIME

Degree centrality

Degree (undirected)

The degree k_i of node i in an undirected networks is the # of links i has to other nodes, or the # of nodes i is linked to



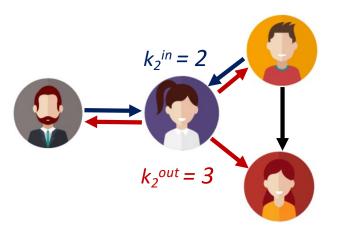
The average degree is

 =
$$\sum k_i / N = (1+3+2+2)/4$$

= 2

Degree (directed)

□ For directed networks we distinguish between in-degree $k_i^{in} = \#$ of entering links out-degree $k_i^{out} = \#$ of exiting links



The average degree is

$$k > = \sum k_i^{out} / N = (1+3+2+0)/4 = \sum k_i^{in} / N = (1+2+1+2)/4 = 3/2$$

Meaning

A social-capital measure of cohesion
 In-degree = importance as an Authority
 Out-degree = importance as a Hub

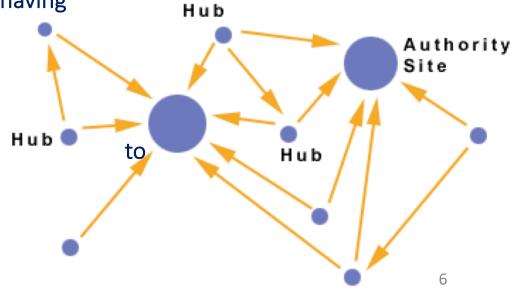
In www:

Authorities (quality as a content provider)

nodes that contain useful information, or having a high number of edges pointing to them (e.g., course homepages)

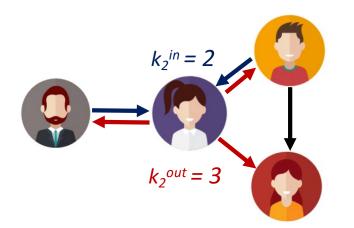
Hubs (quality as an expert)

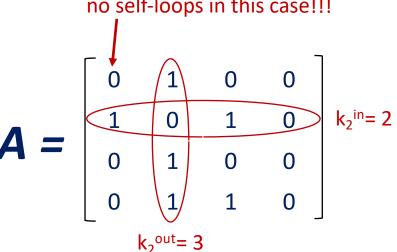
trustworthy nodes, or nodes that link many authorities (e.g., course bulletin)



Adjacency matrix & degree

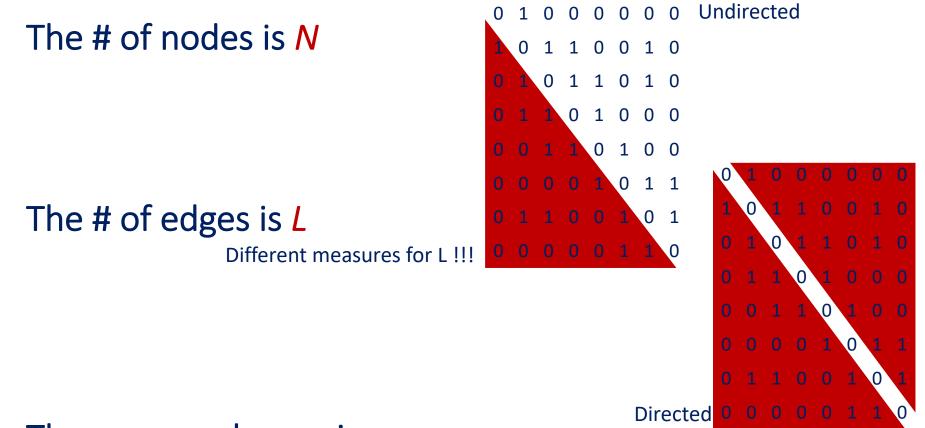
The in (out) degree can be obtained by summing the adjacency matrix over rows (columns)
no self-loops in this case!!!





It works also with (positive) weights! ⁽¹⁾

Average degree



The average degree is → Undirected <k> = 2L/N → Directed <k> = L/N

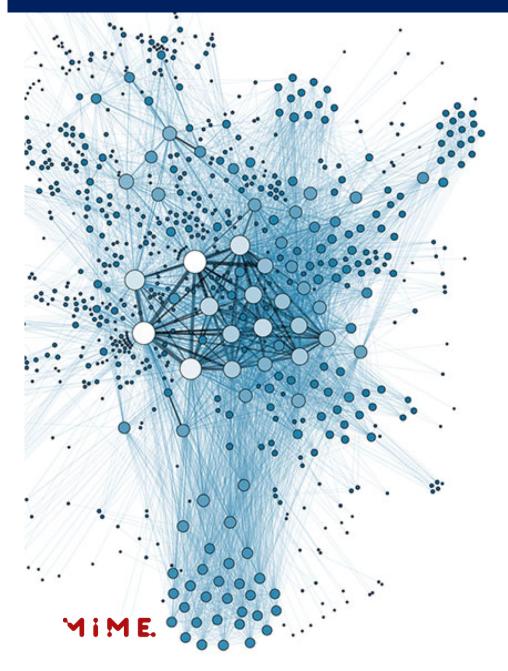
Real networks are sparse

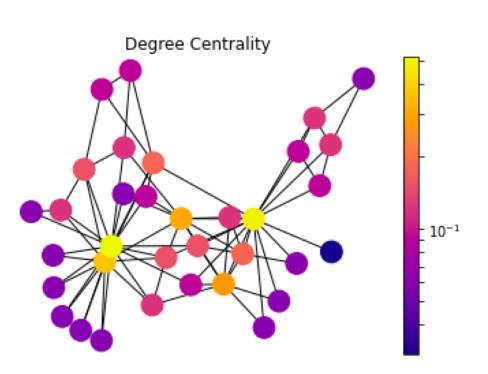
- □ The maximum (average) degree is *N*-1
- $\Box \quad \text{In real networks } <\!\!\!\! <\!\!\! <\!\!\! <\!\!\! <\!\!\! <\!\! N-1$

NETWORK	Ν	L	$\langle k \rangle$
Internet	192,244	609,066	6.34
WWW	325,729	1,497,134	4.60
Power Grid	4,941	6,594	2.67
Mobile Phone Calls	36,595	91,826	2.51
Email	57,194	103,731	1.81
Science Collaboration	23,133	93,439	8.08
Actor Network	702,388	29,397,908	83.71
Citation Network	449,673	4,689,479	10.43
E. Coli Metabolism	1,039	5,802	5.58
Protein Interactions	2,018	2,930	2.90

Illustrate degree centrality

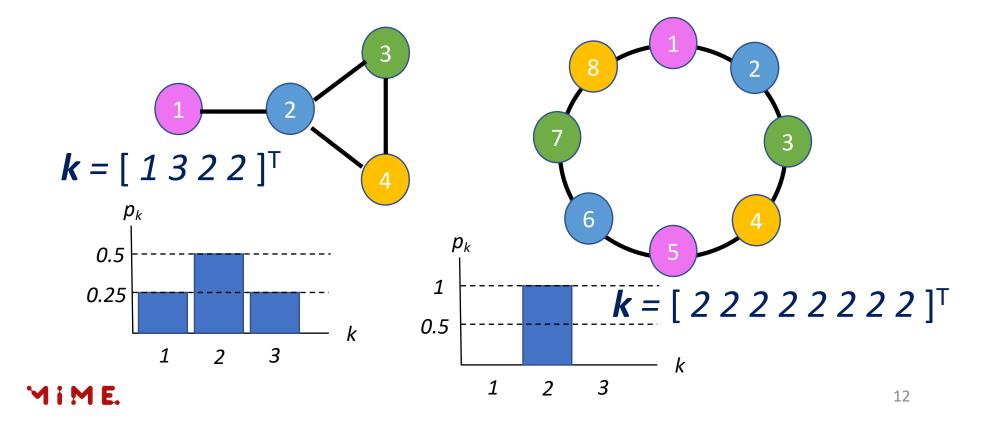
Graphical representations



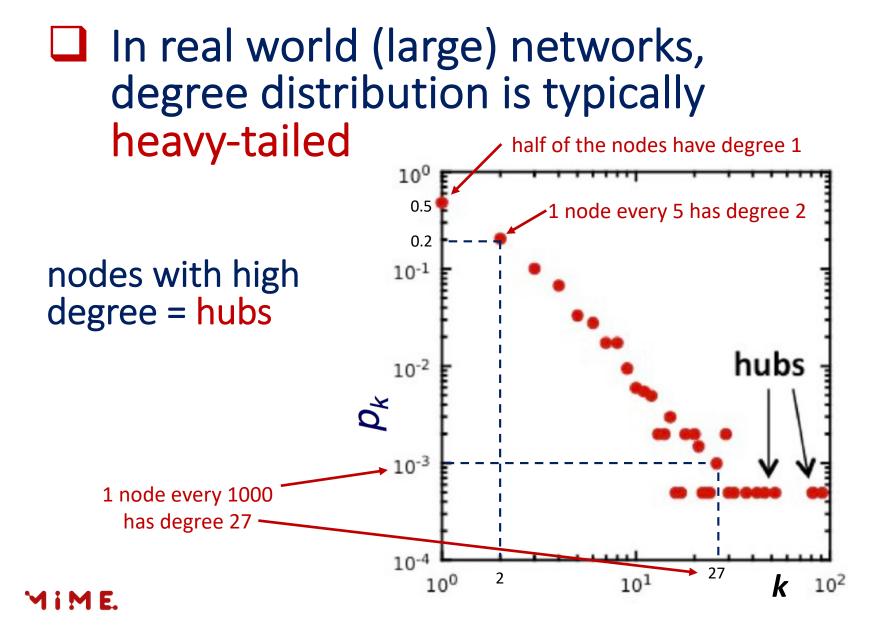


Degree distribution p_k

- ✓ a probability distribution where p_k is the fraction of nodes that have degree exactly equal to k
- \checkmark $p_k = \#$ of nodes with degree k, divided by N

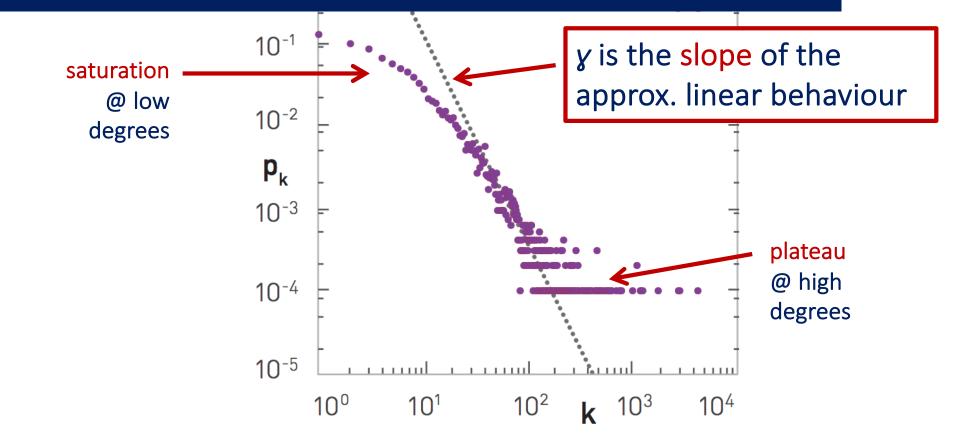


Log-log plot



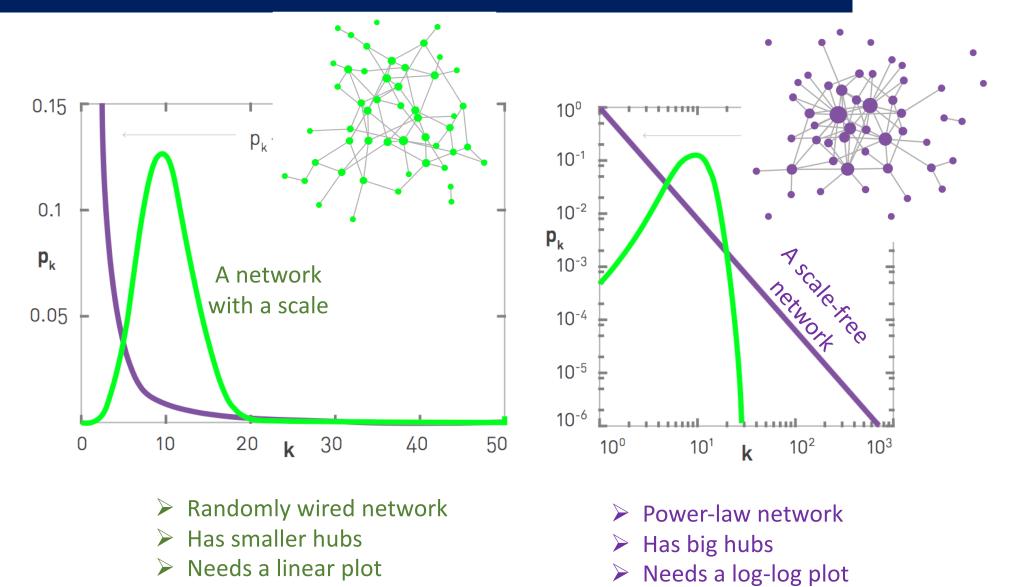
Scale-free networks

The power-law



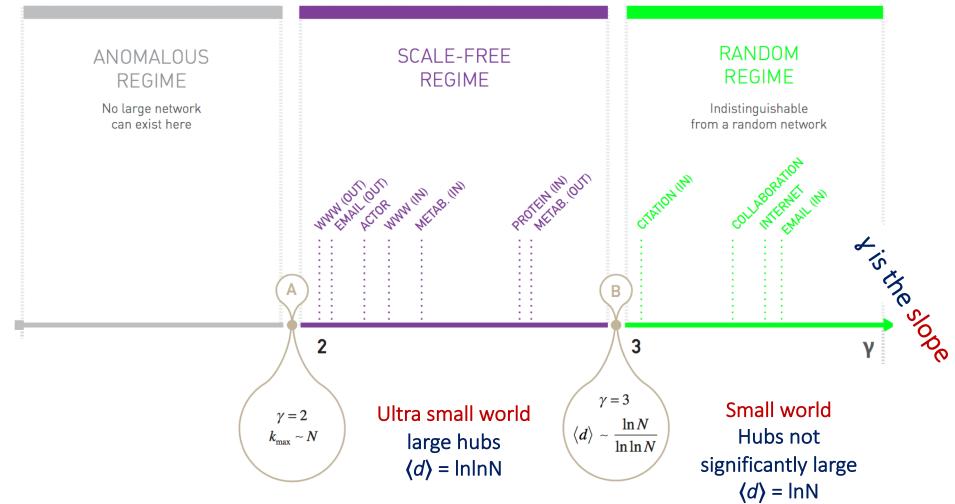
The degree distribution follows a power-law if $p_k = C k^{-\gamma} \rightarrow \ln(p_k) = c - \gamma \cdot \ln(k)$

Scale-free networks



The scale-free regime

A.L. Barabási, Network science, <u>http://barabasi.com/networksciencebook</u>



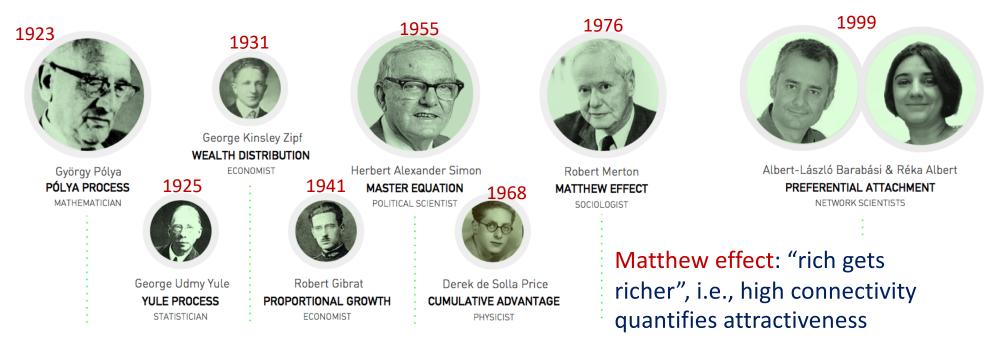
MIME. e.g. in www $N=7.10^9$, $\ln(N)=22.7$, $\ln(\ln(N))=3.12$ (very small)

Why a power law?

#1. Preferential attachment

(new) nodes tend to link to the more connected nodes (e.g., think of www)

This idea has a long history



Explaining preferential attachment

Citation network

researchers decide what papers to read and cite by "copying" references from papers they have read \rightarrow papers with more citations are more likely to be cited

Social network

the more acquaintances an individual has, the higher the chancer of getting new friends, i.e., we "copy" the friends of friends \rightarrow difficult to get friends if you have none

This is called the copying model

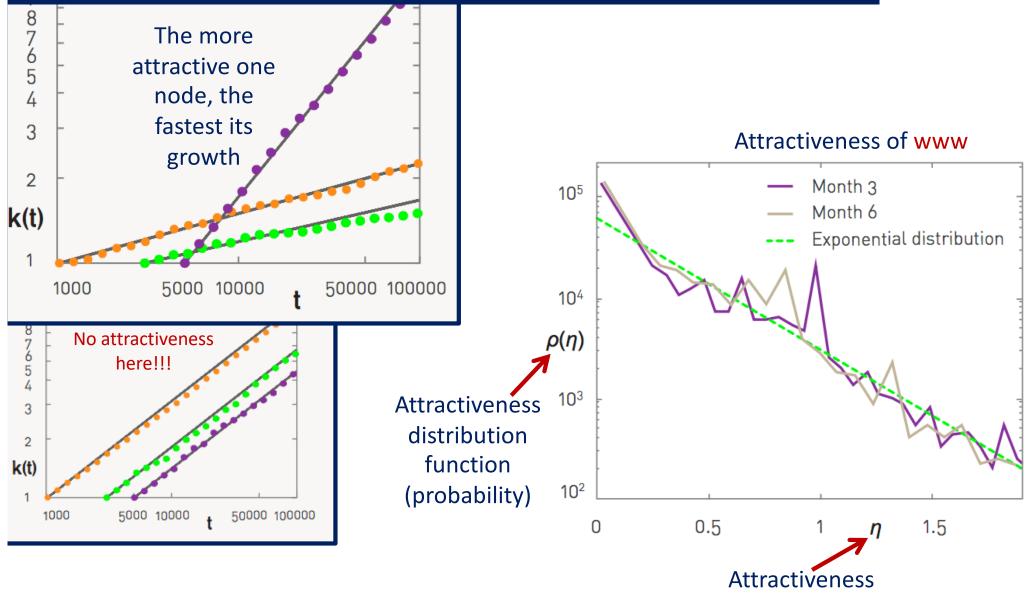
Why a power law?

#2. Attractiveness

- There is an innate ability of a node to attract links (just a quality assessment of the individual)
- Otherwise oldest nodes would have an inherent advantage and cannot be defeated (*first mover's advantage*), which is in contrast with intuition and evidence

e.g., Altavista [1990] → Google [2000] → Facebook [2011] → Instagram [202?]

Measuring attractiveness



Bianconi-Barabási (mathematical) model

The model:

- Growth at time step N a new node is added with attractiveness η
- Attractiveness is a random number drawn from a given distribution $\rho(\eta)$
- □ Preferential attachment probability of linking to node *i* is proportional to both the degree and attractiveness, i.e., $p_i = C k_i \eta_i$

Today take-aways

Degree, degree distribution, loglog plot
 Authorities and hubs
 Power law, scale-free networks
 Slope, Ultra-small-world regime
 Preferential attachment, attractiveness