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Social Network Analysis



Homophily

2



3

Humans and social media
We have access to an unlimited amount of information, 
but we follow a limited number of sources

Because we are…
Bounded

Biased
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Effects on online behaviour
Polarization

Homophily

Selective exposure



Homophily
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Political blog communities



Homophily at action: racial segregation
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(Easley and Kleinberg, 2010)



Polarization
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The extreme segregation of users into
homogeneous communities based on their
opinion on a controversial topic

Polarization of users

neutral

pro-conspiracy

pro-science
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Users’ leaning



Eco chambers
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Definition of echo-chamber

Coexistence of

q opinion polarization with respect to a controversial topic

q homophily in interactions

Cinelli, Morales, Galeazzi, Quattrociocchi, Starnini (2020) 

Echo chambers on social media: A comparative analysis

https://arxiv.org/pdf/2004.09603.pdf

https://arxiv.org/pdf/2004.09603.pdf
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Echo-chamber effect in social networks
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Filter bubbles
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Political leaning

Fac
eB
oo
k

Re
dd
it q Same Topic: News

q Same leaning
assigned to news 
sources

q Different platforms: 
Facebook has a strong 
social feeding
algorithm, Reddit has
not

q Different
characteristics: 
Facebook shows 
segregation among
groups with different
leaning, Reddit has
one group



Polarization in pro-life/pro-choice networks
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Lejla Dzanko, Giulia Rizzoli, Sanja Milijanovic, Sara Shena, Lara Malin Schwarz
IP3 2019/20
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Background

Abortion is one of the most controversial topics in social 
public, political and scientific debates in different
disciplines

Often debates result in reforms of the law → USA 2019

Two movements: 
q Pro-Life: every human (embryo) has the right to live; 

abortion is murder → goal to ban it
q Pro-Choice: every woman should have the right to 

decide what to do with her body on her own → goal 
to keep abortion safe and legal
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Data collection

Pro-Choice Pro-Life

#prochoice
#mybodymychoice
#abortionishealthcare
#abortionisawomansright
#abortionrights
#abortionismurder
#abortionsupportnetwork
#proabortion

#prolife
#savethebabies
#babiesarehuman
#chooselife
#abortionban
#abortionismurder
#lovethemboth
#whywemarch
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PageRank centrality
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Hashtag polarization

● Measure of hashtags centralities among the two dataset
● Extract which opinion an hashtag holds

Prestige mapping
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Hashtag polarization
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Polarization effects

Absence of a debate? 



Assortativity (degree homophily)
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A.L. Barabási, Network science, http://barabasi.com/networksciencebook

Ch.7 “Degree correlation”

http://barabasi.com/networksciencebook


Correlation between hubs

22

q In some networks, hubs frequently connect
with other hubs

e.g., celebrity dating, actor networks

q In other cases hubs avoid connections with 
other hubs

e.g., methabolic graphs, food webs (predators tend to 
differentiate their diet)



Assortativity
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q Assortative network: high degree nodes 
connect with each other avoiding low 
degree nodes (tend to cliques)

q Disassortative network: opposite trend, 
hubs tend to avoid each other

q Neutral network: one with random wiring, 
i.e., aside from the (marginal) degree 
distribution of nodes, there is no correlation
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Assortativity

(dis)assortativity in sociology quantifies homophily 
in social networks, e.g., effects like:

q Rich people tend to be friends with each other
q People with the same education tend to hang 

out together

i.e., we expect social networks to be assortative



Neutral networks
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The degree correlation matrix Ek1,k2 is
visually centred around the average degree

In the neutral case we expect 
Ek1,k2 = qk1 qk2, i.e., independence



Assortative networks
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The degree correlation matrix 
Ek1,k2 is turning to the right



Disassortative networks
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The degree correlation matrix 
Ek1,k2 is turning to the left



Nearest neighbour degree
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q Idea : inspect the degrees 
of the neighbouring nodes (easier than 
matrices)

average neighbour 
degree of node i is       

¼ (4 + 3 + 1 + 3) = 2.75 
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ln (knn) = ! ln(ki) à ! > 0 = assortative

! < 0 = disassortative

constant = independent of the 
degree (i.e., random = neutral)

Examples



Scientific collaboration network
(undirected, assortative)
http://networksciencebook.com/translations/en/
resources/data.html

1. Evaluate average neigh. deg. knn
2. Average w.r.t. k
3. Extract the assortativity value 

!=0.16

Scientific collaboration network
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http://networksciencebook.com/translations/en/resources/data.html
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Hashtag network disassortativity
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Implications of assortativity
(dis)assortativity influences the path length and the 
network diameter

PDF of node 
distances

In assortative
networks the 
average path 

length decreases

… and the diameter increases!!! (nodes 
with low degree tend to interconnect)



Structural Disassortativity
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structural 
disassortativity

structural cutoff
natural
cutoff

small natural 
cutoff

no structural 
disassortativity

large degrees cannot 
be supported by a 
neutral network

Rationale for (dis)assortativity
(dis)Assortativity can be linked to structural network 
properties
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Real networks
neutral assortative assortative

assortative assortative

disassortative

disassortativeneutral

structural 
disassortativity

Social networks are assortative, most with a structural cutoff



36

Randomization curve

Check with the yellow R-S curve (null model/unbiased):

q it is a degree preserving randomization

q at each randomization step we check that we do not 
have more than one link between any node pairs 

q obtained for 100 independent trials
q If knn does not change à disassortativity is due to a 

structural reason (i.e., on the degree distribution)

q if something changes à deeper reasons

Real networks may look as disassortative because
q they really involve disassortative effects
q they do not but just have it as structural



Questions ?
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Clustering coefficient
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What is the Clustering coefficient?
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Rationale: how str
ongly 

connected is t
he network 

locally / g
eneral indication of 

the graph’s te
ndency to be 

organized into clusters



Triadic closure
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Triadic closure

q A and C are likely to have the opportunity to meet 
because they have a common friend B

q The fact that A and C is friends with B gives them the 
basis of trusting each other

q B may have the incentive to bring A and C together, 
as it may be hard for B to maintain disjoint 
relationships 

Forbidden triad
Triadic closure

(A and C are likely to be friends)



Clustering coefficient and triadic closure
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A measure for triadic closure – node’s view
q Clustering coefficient Ci

q Counts the fraction of pairs of neighbours which form 
a triadic closure with node i

Ci =

where tcijk = 1 if the triplet (i,j,k) forms a triadic closure, 
and zero otherwise



Examples
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1

2 3

4 5

C1  = 1 =  6 / (4x3/2) 

1

2 3

4 5

C1  = 0

1

2 3

4 5

C1  = ½ =  3 / (4x3/2) 

not connected 
neighbourhood

weakly connected 
neighbourhood

strongly connected 
neighbourhood

<C> = 0
<C> = 1

<C> = 0.766
C2  = C3 = ⅔, C4  = C5 = 1



Visual example 1
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Visual example 2

44

But clustering coefficient is generally hard to see and visual
interpretation is considered unreliable


