Social Network Analysis

\#3 Graphs

© 2020 T. Erseghe

Euler \& the 7 bridges of Königsberg (1736)

How to walk through the city by crossing each bridge only once?

Networks as graphs

Graph $\mathcal{G}(\mathcal{V}, \boldsymbol{\mathcal { E }})$: network
\square Vertices (set \mathcal{V}) : nodes, people, concepts
\square Edges (set \mathcal{E}): links, relations, associations

Directed versus undirected

\square A connection relationship can have a privileged direction or can be mutual
\square Either a directed or an undirected link

If the network has only (un)directed links, it is also called itself (un)directed network
\square Certain networks can have both types

Directed versus undirected

\square At first glance undirected \rightarrow directed by duplicating links, but not necessarily quite the same though

Some examples

Can U think of other social nets?

Generality of representation

Multi-graphs

\square Multi-graphs (or pseudo-graphs)
Some network representations require multiple links (e.g., number of citations from one author to another)

Weighted graph

\square Weighted graph

Sometimes a weight is associated to a link, e.g., to underline that the links are not identical (strong/weak relationships)

Can be seen as a generalization of multi-graphs (weight = \# of links)


```
e.g., strength of a tie
    0.2 = weak (acquaintances)
    1 = strong (friends)
    1.5 = stronger (close friends)
    2.3 = very strong (best friends)
```


Signed graphs

\square Edges can have signed values
positive if there is an agreement between nodes negative if there's a disagreement

\square This is typical of correlation networks correlation = a measure of similarity
\square More difficult to handle

MiME.

Example

A personality network (Costantini et al, 2015)

MiME.

Self-interactions

In many networks nodes do not interact with themselves
\square To account for self-interactions, we add loops to represent them

Adjacency matrix

\square An adjacency matrix $A=\left[a_{i j}\right]$ associated to graph \boldsymbol{G} has

entries $a_{i j}=0$ if nodes i and j are not connected if nodes i and j are connected then $a_{i j} \neq 0$
in plain (binary) graphs $a_{i j}=\{1,0\}$

Symmetries

\square Undirected graph = symmetric matrix

\square Directed graph $=$ asymmetric matrix

Convention

\square The weight $a_{i j}$ is associated to i th row
j th column
directed edge $j \rightarrow i$ starting from node j and leading to node i

Example

MiME.
which of these representations do you like best?

Graph plots do not always carry relevant info

Real networks are sparse

The adjacency matrix is typically sparse good for tractability !

A question 4 u

So, what's the take-away so far?

Storing network data

Adjacency matrix versus edge list

$$
\boldsymbol{A}=\left[\begin{array}{ccccccc}
& l \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Which one do U think is better?

Useful terms

\square Path
a sequence of interconnected nodes (meaning each pair of nodes adjacent in the sequence are connected by a link)

\square Path length
\# of links involved in the path (if the path involves n nodes then the path link is $n-1$)
\square Cycle
path where starting and ending nodes coincide

Useful terms

\square Shortest path (between any two nodes) the path with the minimum length, which is called the distance
it is not unique!
\square Diameter (of the network) the highest distance in the network

\square Algorithms
available to compute distances: Dijkstra, Bellman-Ford, BFS

Small world

\square Average path length
average distance between all nodes pairs (apply an algorithm to all node couples, and take the average)
\square In real networks distance between two randomly chosen nodes is generally short
\square Milgram [1967]: 6 degrees of separation
\square What does this mean?
We are more connected than we think

We \& the US

Connectivity

\square Connected graph (undirected)

for all couples (i, j) there exists a path connecting them
if disconnected, we count the \# of connected components (e.g., use BFS and iterate)
\square Giant component (the biggest one)
\square Isolates (the other ones)

$$
\boldsymbol{A}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

MiME.

Bridges (ideal definition)

\square A bridge is a link between two connected components
its removal would make the network disconnected

Bipartite graphs

Connections are available only between the groups \mathcal{V}_{1} and \mathcal{V}_{2}

MiME.

Example

Tweets

\#

Hashtags

Meaning

\square Bipartite graphs are useful to represents memberships/relationships, e.g., groups $\left(\mathcal{V}_{1}\right)$ to which people $\left(\mathcal{V}_{2}\right)$ belong
examples: movies/actors, classes/students, conferences/authors
\square We can build separate networks (projections) for \mathcal{V}_{1} and \mathcal{V}_{2} (sometimes this is useful)
in the movies/actors example being linked can be interpreted in two ways: "actors in the same movie" (projection on \mathcal{V}_{2}), or "movies sharing the same actor" (projection on \mathcal{V}_{1})

Projection on \#

\#climateaction tweets after Greta Thunberg

MiME.

Example

A bit of maths

The two projections on \mathcal{V}_{1} and \mathcal{V}_{2} can be obtained by inspecting the squared adjacency matrix A^{2}

> \# of common neighbors of $i=6$ and $j=5$

Today take-aways

(un)Directed graphs
Weighted and signed graphs
\square Adjacency matrix
Giant component, isolates, bridges
Bipartite graphs and projections

