Social Network Analysis

#3 Graphs

© 2020 T. Erseghe

Euler & the 7 bridges of Königsberg (1736)

How to walk through the city by crossing each bridge only once?

Networks as graphs

mathematics

- \square Vertices (set \mathcal{V}): nodes, people, concepts
- \square Edges (set \mathcal{E}): links, relations, associations

technology

Directed versus undirected

- A connection relationship can have a privileged direction or can be mutual
 - ☐ Either a directed or an undirected link

- ☐ If the network has only (un)directed links, it is also called itself (un)directed network
 - Certain networks can have both types

Directed versus undirected

At first glance undirected → directed by duplicating links, but not necessarily quite the same though

Some examples

Can U think of other social nets?

0			
	network	nodes and links	type
	Twitter	followers & tweets	directed
9	WhatsApp	telephone # & messages	directed
200	LinkedIn		
	WhatsApp	telephone # & connections through groups	undirected
	Twitter	people & hashtags	directed/un directed
100	Twitter	hashtags & tweets	undirected
/\t\	Twitter	tweets & hashtags	undirected
MIME	_ / ½ / *		3

Generality of representation

Multi-graphs

Multi-graphs (or pseudo-graphs)
Some network representations require multiple links (e.g., number of citations from one author to another)

Weighted graph

Weighted graph

Sometimes a weight is associated to a link, e.g., to underline that the links are not identical (strong/weak relationships)

Can be seen as a generalization of multi-graphs (weight = # of links)

e.g., strength of a tie

0.2 = weak (acquaintances)

1 = strong (friends)

1.5 = stronger (close friends)

2.3 = very strong (best friends)

Signed graphs

Edges can have signed values

positive if there is an agreement between nodes

negative if there's a disagreement

- This is typical of correlation networks correlation = a measure of similarity
- More difficult to handle

Example

Self-interactions

- ☐ In many networks nodes do not interact with themselves
- □ To account for self-interactions, we add loops to represent them

Adjacency matrix

An adjacency matrix $A = [a_{ij}]$ associated to graph G has

entries $a_{ij} = 0$ if nodes i and j are not connected if nodes i and j are connected then $a_{ij} \neq 0$

in plain (binary) graphs $a_{ij} = \{1,0\}$

Symmetries

☐ Undirected graph = symmetric matrix

☐ Directed graph = asymmetric matrix

Convention

The weight a_{ij} is associated to i th row j th column directed edge $j \rightarrow i$ starting from node j and leading to node i

Example

Graph plots do not always carry relevant info

Real networks are sparse

The adjacency matrix is typically sparse

good for tractability!

A question 4 u

☐ So, what's the take-away so far?

Storing network data

Adjacency matrix versus edge list

Which one do U think is better?

Useful terms

Path

a sequence of interconnected nodes (meaning each pair of nodes adjacent in the sequence are connected by a link)

- Path length
 - # of links involved in the path (if the path involves n nodes then the path link is n-1)
- **└** Cycle

path where starting and ending nodes coincide

Useful terms

Shortest path (between any two nodes)
the path with the minimum length, which is called the distance

Diameter (of the network)
the highest distance in the network

it is **not** unique!

- The diameter is u-5
- Algorithms
 available to compute distances: Dijkstra, Bellman-Ford, BFS

Small world

Average path length

average distance between all nodes pairs (apply an algorithm to all node couples, and take the average)

☐ In real networks distance between two randomly chosen nodes is generally short

☐ Milgram [1967]: 6 degrees of separation

■ What does this mean?
We are more connected than we think

Ralph

Jane

Peter

We & the US

Connectivity

Connected graph (undirected)

for all couples (i,j) there exists a path connecting them

if disconnected, we count the # of connected components (e.g., use BFS and iterate)

- ☐ Giant component (the biggest one)
- ☐ Isolates (the other ones)

block-diagonal matrix

Bridges (ideal definition)

☐ A bridge is a link between two connected components

its removal would make the network disconnected

Bipartite graphs

Connections are available only between the groups \mathcal{V}_1 and \mathcal{V}_2

Example

Meaning

Bipartite graphs are useful to represents memberships/relationships, e.g., groups (\mathcal{V}_1) to which people (\mathcal{V}_2) belong

examples: movies/actors, classes/students, conferences/authors

 $oldsymbol{\square}$ We can build separate networks (projections) for \mathcal{V}_1 and \mathcal{V}_2 (sometimes this is useful)

in the movies/actors example being linked can be interpreted in two ways: "actors in the same movie" (projection on \mathcal{V}_2), or "movies sharing the same actor" (projection on \mathcal{V}_1)

Projection on

Example

Nodes are linked if they have a common neighbour in \mathcal{V}_2

PS: we say that nodes *i* and *j* have a common neighbour k if both i and j are connected to k

Nodes are linked if they have a common neighbour in \mathcal{V}_1

A bit of maths

The two projections on \mathcal{V}_1 and \mathcal{V}_2 can be obtained by inspecting the squared adjacency matrix A^2

Today take-aways

- ☐ (un)Directed graphs
- Weighted and signed graphs
- Adjacency matrix
- Giant component, isolates, bridges
- Bipartite graphs and projections

