Social Network Analysis

Other centrality measures
© 2021 T. Erseghe

Local PageRank

MiME.

PageRank

Idea:

\square the surfer does not necessarily move to one of the links of the
 page she/he is viewing
\square with a certain probability, might jump to a random page
the remaining $1-c=15 \%$ of the times the surfer moves to a random page according to a probability vector q, e.g., $q=1 / \mathrm{N}$ for uniform probability
damping factor, typically $c=0.85$, meaning that 85% of the times the surfer moves to one of the links of the page

Measuring closeness: Local PageRank

Idea

\square Measure similarity to node i by applying TopicSpecific PageRank with a teleport set with a unique element $S=\{i\}$ and $q=\left[\begin{array}{lllll}0 & . . & 0 & 1 & 0\end{array}\right.$... 0]

Result
\square Measures direct and indirect multiple connections, their quality, degree or weight

MiME.

Example: who's Sarah's best friend?

Example: who's Giulia's best friend?

MiME.

Example

What is the most related conference to ICDM?

Top 10 ranking results

ICDM = international conf. on data mining KDD = knowledge discovery and data mining

Local PageRank (authorities , A)

Local PageRank

1-hop
 out-neighbours

neighbours authority score $=$ local node \rightarrow neighbours

Local PageRank (hubs, A^{\top})

Local PageRank

neighbours hub score $=$ neighbours \rightarrow local node
in-neighbours
1-hop

How can we use PageRank?

Want to measure proximity/similarity to a node? Local PageRank

Want to know about a specific topic? TopicSpecific PageRank
... appropriately select your teleport vector \boldsymbol{q} !

Topic specific PageRank

Idea
\square Bias the random walk towards a topic specific teleport set S of nodes, i.e., make sure that \boldsymbol{q} is active in S only
$\square S$ should contain only pages that are relevant to the topic Result
\square The random walk deterministically ends in a small set E, containing S, and being in some sense close to it

Example: tweets \& hastag communities

Idea

\square Assign a tweet to the \# community it is closer to

Closeness centrality

What is Closeness?

Closeness centrality

From Wikipedia, the free encyclopedia

In a connected graph, closeness centrality (or closeness) of a node is a measure of centrality in a network, calculated as the reciprocal of the sum of the length of the shortest paths between the node and all other nodes in the graph. Thus, the more central a node is, the closer it is to all other nodes.

Closeness was defined by Bavelas (1950) as the reciprocal of the farness, ${ }^{[1][2]}$ that is:

$$
C(x)=\frac{1}{\sum_{y} d(y, x)}
$$

where $d(y, x)$ is the distance between vertices x and y.

Example

count the lengths of the shortest paths
leading to Giulia
$1+2+1+2+1=7$

Closeness

$$
\begin{aligned}
C(\text { Giulia }) & =1 / 7 \\
& =0.1429
\end{aligned}
$$

Closeness versus Degree centrality

Closeness

Degree

Harmonic centrality

In disconnected graphs [edit]

When a graph is not strongly connected, a widespread idea is that of using the sum reciprocal of distances, instead of the reciprocal of the sum of distances, with the convention $1 / \infty=0$:

$$
H(x)=\sum_{y \neq x} \frac{1}{d(y, x)}
$$

The most natural modification of Bavelas's definition of closeness is following the general principle proposed by Marchiori and Latora (2000) ${ }^{[3]}$ that in graphs with infinite distances the harmonic mean behaves better than the arithmetic mean. Indeed, Bavelas's closeness can be described as the denormalized reciprocal of the arithmetic mean of distances, whereas harmonic centrality is the denormalized reciprocal of the harmonic mean of distances.

Closeness versus Harmonic centrality

Closeness

Harmonic

Betweenness centrality

What is Betweenness?

Betweenness centrality

From Wikipedia, the free encyclopedia

In graph theory, betweenness centrality is a measure of centrality in a graph based on shortest paths. For every pair of vertices in a connected graph, there exists at least one shortest path between the vertices such that either the number of edges that the path passes through (for unweighted graphs) or the sum of the weights of the edges (for weighted graphs) is minimized. The betweenness centrality for each vertex is the number of these shortest paths that pass through the vertex.

Betweenness centrality was devised as a general measure of centrality: ${ }^{[1]}$ it applies to a wide range of problems in network theory, including problems related to social networks, biology, transport and scientific cooperation. Although earlier authors have intuitively described centrality as based on betweenness, Freeman (1977) gave the first formal definition of betweenness centrality.

Example

MiME.

Closeness versus Betweenness centrality

Minnesota road network

Closeness is a measure of center of gravity (best node from which to spread info)

Betweenness is a measure of brokerage (i.e., being a bridge)

Betweenness versus PageRank centrality

Betweenness
PageRank

MiME.

Clustering coefficient

MiME.

What is the Clustering coefficient?

Local clustering coefficient [edit]

The local clustering coefficient of a vertex (node) in a graph quantifies how close its neighbours are to being a clique (complete graph). Duncan J. Watts and Steven Strogatz introduced the measure in 1998 to determine whether a graph is a small-world network.

Triadic closure

Forbidden triad

Triadic closure
(A and C are likely to be friends)

Triadic closure
$\square A$ and C are likely to have the opportunity to meet because they have a common friend B
\square The fact that A and C is friends with B gives them the basis of trusting each other
$\square B$ may have the incentive to bring A and C together, as it may be hard for B to maintain disjoint relationships

Clustering coefficient and triadic closure

A measure for triadic closure - node's view
\square Clustering coefficient C_{i}
\square Counts the fraction of pairs of neighbours which form a triadic closure with node i

$$
C_{i}=\frac{1}{\left|\mathcal{N}_{i}\right|\left(\left|\mathcal{N}_{i}\right|-1\right)} \sum_{\substack{(, k) \in \mathcal{N}_{i}^{2} \\ j \not k k}} \operatorname{tc}_{i, j, k}
$$

where $t c_{i j k}=1$ if the triplet (i, j, k) forms a triadic closure, and zero otherwise

Examples

not connected
strongly connected neighbourhood
neighbourhood

$$
C_{1}=1=6 / 6
$$

$<C>=1$

$$
\begin{gathered}
C_{2}=C_{3}=2 / 3, C_{4}=C_{5}=1 \\
\langle C\rangle=0.766
\end{gathered}
$$

Warning

But clustering coefficient is generally hard to see and visual interpretation is considered unreliable

Visual example

Wrap up

MiME.

Centrality measures wrap-up

Centrality measure	Technical property	Meaning		
Degree (in/out)	$\begin{array}{l}\text { Measures number (and } \\ \text { quality) of connections }\end{array}$	$\begin{array}{l}\text { Cohesion, Self-monitoring, } \\ \text { Entrepreneurship, Extraversion, } \\ \text { Popularity }\end{array}$		
$\begin{array}{l}\text { PageRank } \\ \text { (authorithies/hubs) }\end{array}$	$\begin{array}{l}\text { Measures number (and } \\ \text { quality) of direct and } \\ \text { indirect connections }\end{array}$	$\begin{array}{l}\text { Cohesion, Self-monitoring, } \\ \text { Entrepreneurship, Extraversion, } \\ \text { Authority, } \\ \text { Closeness/Similarity/Friendship } \\ \text { (with a direction), }\end{array}$		
Dependence			$\}$	Visual centrality, Influence,
:---				
Closeness				
Measures length of min				
paths				
Outliers	$	$	Brokerage,	
:---				
Betweenness				
Measures number of min				
paths				

Take-aways

https://reticular.hypotheses.org/1745

Visual analysis
Overall organisation
Clusters (highly connected)
Sparse areas (less connected)
Cliques and strongly connected components Disconnected components Center/Periphery
$\bullet \bigcirc \rightarrow 0$
Betweenness centrality Number of times being on the shortest path between two other nodes
-1
Number of Triangles Number of times connecting two nodes that are also connected together

