Social Network Analysis

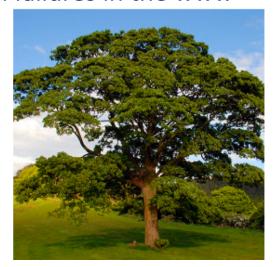
Other Analytics

© 2020 T. Erseghe

Robustness

A.L. Barabási, Network science, http://barabasi.com/networksciencebook

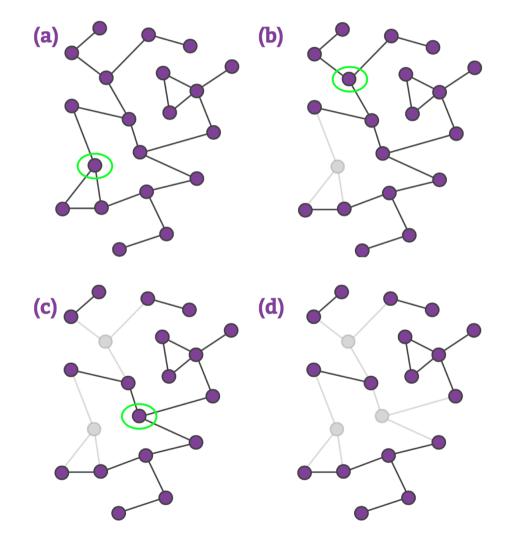
Ch.8 "Network robustness"



Network robustness

- We are interested in network robustness to failures
- Want to understand how real networks work under imperfect conditions/malfunctioning

e.g., why some mutations lead to diseases (biology & medicine) stability of social networks to disruptive events (war, famine, etc) robustness to occasional failures in the www

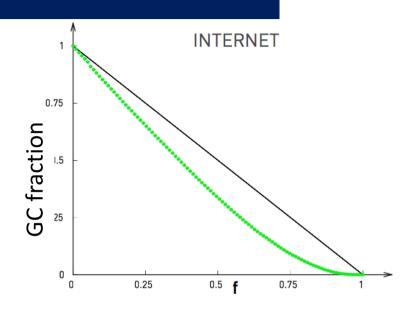

Oak, Quercus Robur → robust

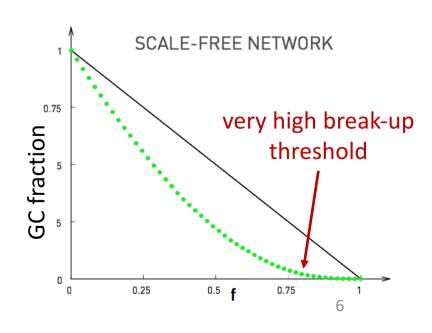
Network robustness

- Would the network still "work" in the presence of missing nodes?
- ☐ Failures can lead to either just isolating nodes or breaking the whole network apart
- What is the limit/phase transition?

Applications

This can serve to identify:


- robustness of air transportation under random strikes
- robustness of social contacts even when someone is off
- possibility of destroying of criminal/terror networks
- eradication of an epidemics



Robustness of scale-free nets

- Robustness of the Internet due to scale-free properties
- Nodes linked to the GC after random removal with rate f
 → still large if f<1

- Experiments aligned with a scale-free model
- Reason: random removal of (many) hubs is very unlikely

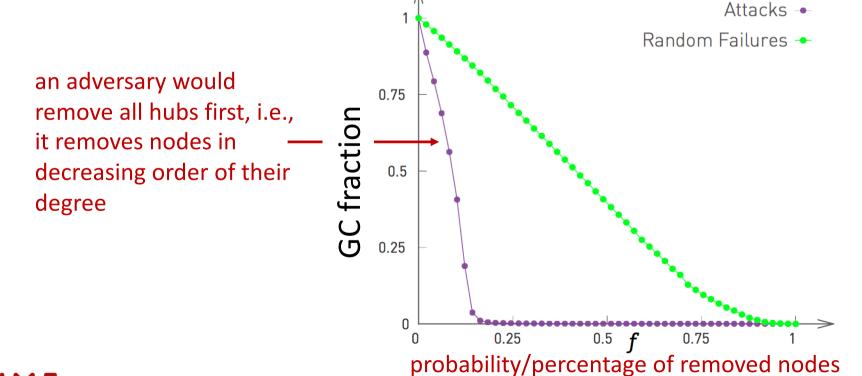
Breaking point in scale-free nets

- \square Assume node removal at rate f
- The inhomogeneity ratio is $\kappa = \langle k^2 \rangle / \langle k \rangle$, e.g., in random networks $\kappa = 1 + \langle k \rangle$
- ☐ The breaking point is

 $f_c = 1 - 1/(\kappa - 1)$ which

solely depends on the

degree distribution


Some implications

- networks with big hubs (causing wide deviations from $\langle k \rangle$) are hard to die
- in random networks $f_c = 1 1/\langle k \rangle$, i.e., large average degrees strengthen the network
- \square in scale-free networks the exponent γ sets the network robustness

Attack tolerance

■ What if removals are not by chance, but caused by an adversary with sufficient insights on our network?

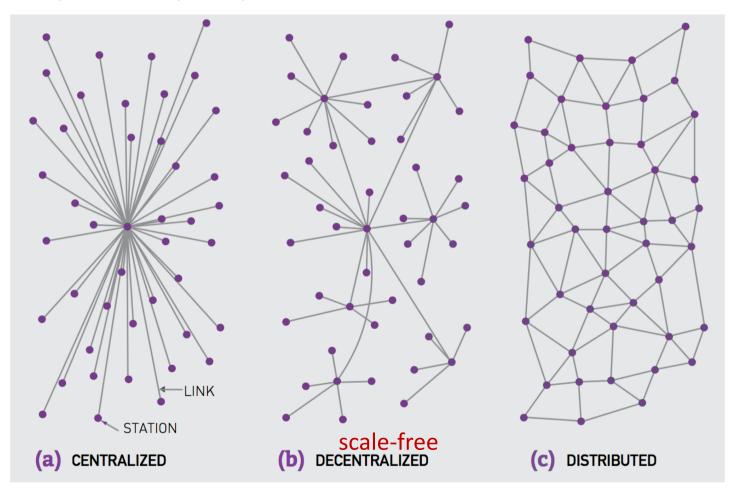
Fragility of scale-free nets

- Scale-free networks are not very robust to targeted attacks exactly because they have vulnerable hubs
- Recall that $f_c = 1 1/(\kappa 1)$ meaning that robustness depends on κ , and removing hubs reduces κ

- good news in medicine (vulnerability of bacteria)
- □ bad news for the Internet ⊗

Breaking point in scale-free nets

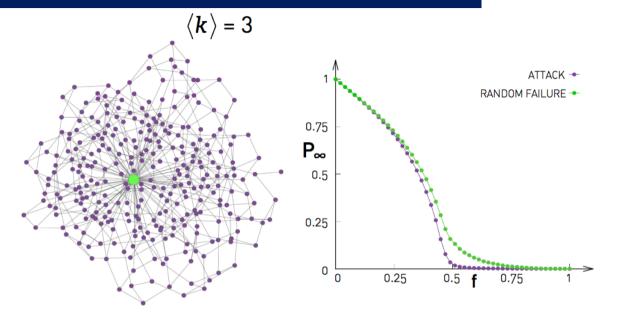
NETWORK	DOM FAILURES EAL NETWORK)	RANDOM FAILURES (RANDOMIZED NETWORK)	ATTACK (REAL NETWORK	()
Internet	0.92	0.84	0.16	
WWW	0.88	0.85	0.12	
Power Grid	0.61	0.63	0.20	
Mobile-Phone Call	0.78	0.68	0.20	
Email	0.92	0.69	0.04	
Science Collaboration	0.92	0.88	0.27	
Actor Network	0.98	0.99	0.55	
Citation Network	0.96	0.95	0.76	
E. Coli Metabolism	0.96	0.90	0.49	
Yeast Protein Interactions	0.88	0.66	0.06	

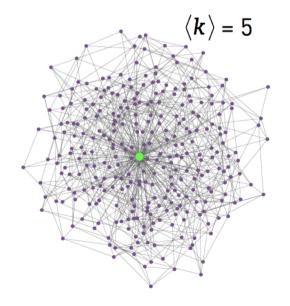

Not robust to random failures (exponential degree distribution)

estimated value

Optimizing robustness

An early attempt by Paul Baran [1959]

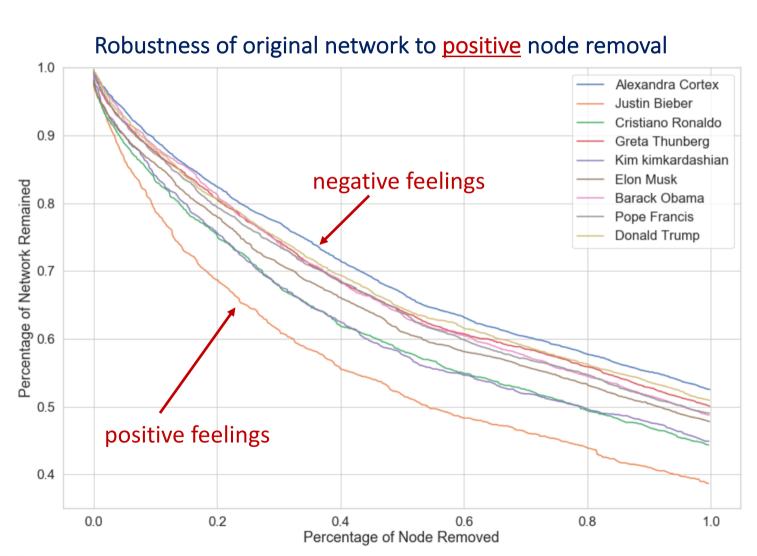


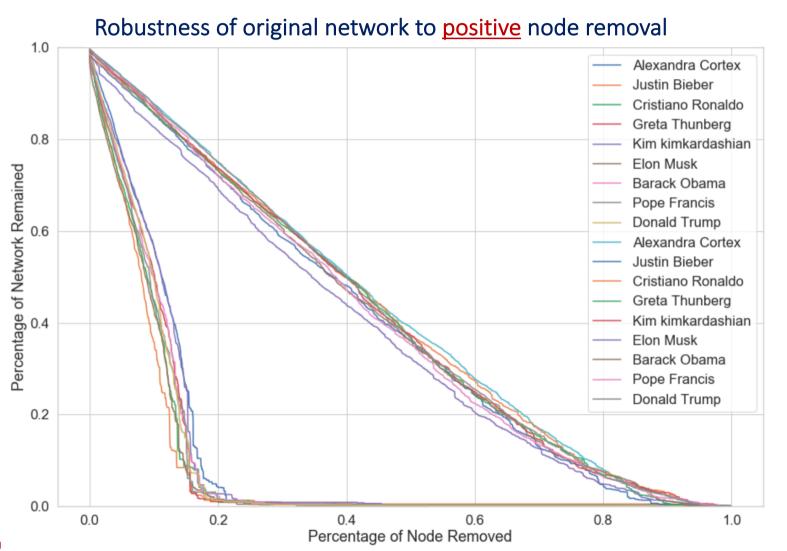


Optimizing robustness

The best option is a bimodal distribution

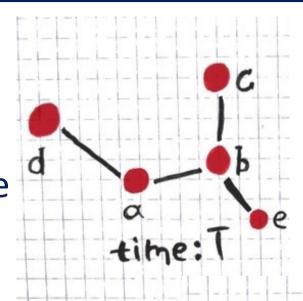
$$p_k = r \, \delta_{k\text{max}} + (1-r) \, \delta_{k\text{min}}$$

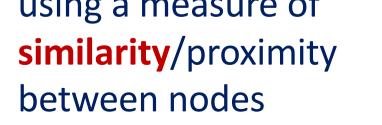



Network analysis of Tweets' sentiment

Salvatore Romano, Alberto Zancanaro, Enrico Lanza, Carlo Facchin

Network analysis of Tweets' sentiment


Link Prediction


The link prediction task

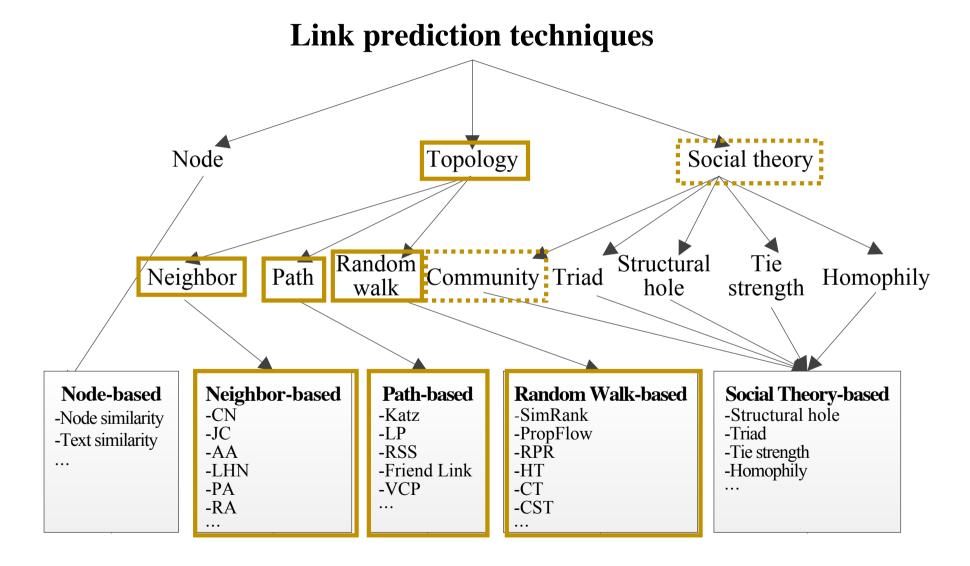
Given a graph at time T, can we output a ranked list of links that are predicted to appear in the graph at time T+x?

idea

We can build the list by using a measure of between nodes

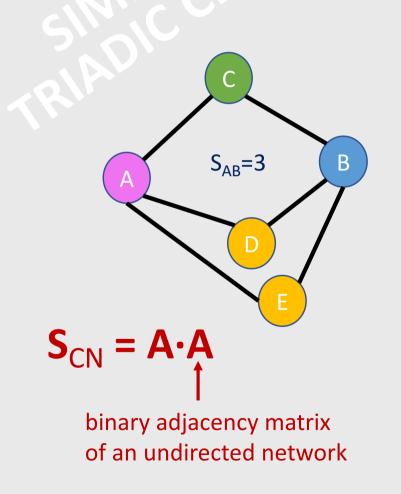
time: T+x

The link prediction task


Applications:

- Recommendation in social networks
- Finding experts and collaborations in academic social networks
- Reciprocal relationships prediction
- Network completion problem
- Social tie prediction
- •

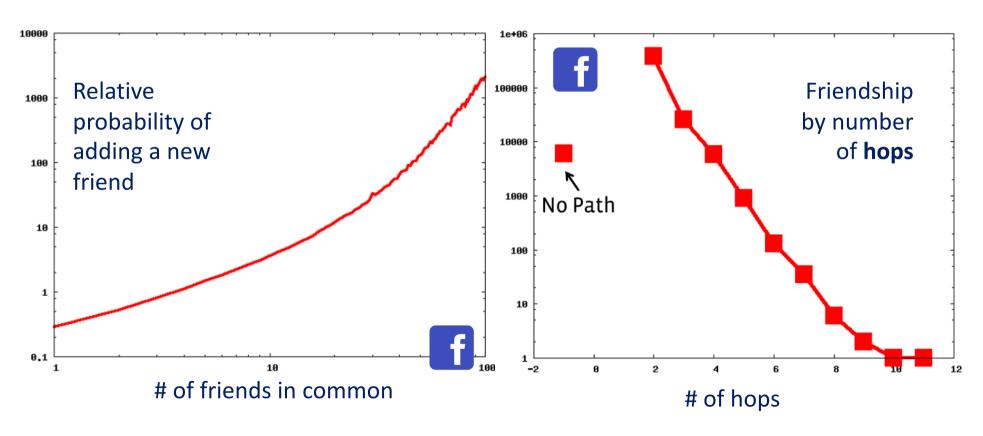
The link prediction task


Neighbour based techniques

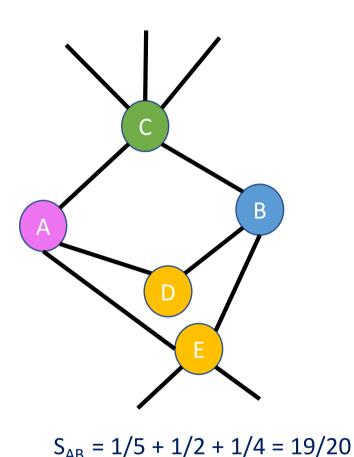
These **local** techniques are modification of a simple idea

Common neighbours - CN

The more neighbours in common, the more likely the link to appear


intersection
$$S_{CN}(i,j) = |N_i \cap N_j|$$
(the set of) neighbours of j

Neighbour based techniques


more mutual friendships help in becoming a friend

95% of the new friendships in facebook are **friend-of-a-friend**

Neighbour based techniques

Resource allocation - RA

Punishes more heavily the high-degree common neighbours

$$S_{RA}(i,j) = \sum_{k \in N_i \cap N_j} 1 / |N_k|$$

... but very many variations exist

Path based techniques

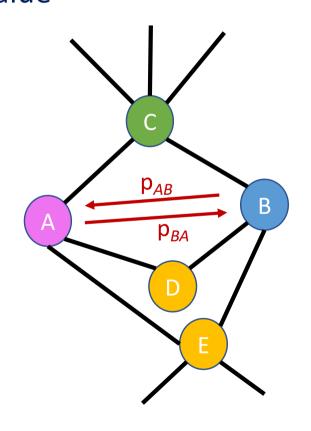
These **global** techniques are a generalization of CN to take into account the (very many) paths of length $\ell \ge 2$

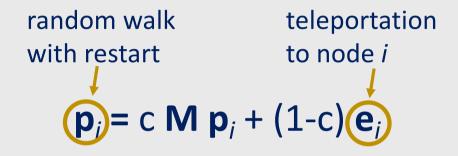
Kats

of paths of length ℓ between nodes i and j

$$S_{\text{Katz}} = \sum_{\ell \ge 1} \beta^{\ell} \mathbf{A}^{\ell}$$

damping factor (weights more shorter paths), it needs to be sufficiently small $0 < \beta < 1$


Local path - LP


$$S_{1P} = A^2 + \beta A^3$$

Random walk based techniques

These **global** techniques exploit the Local PageRank value

Random walk with restart - RWR

$$S_{RWR}(i,j) = p_{ij} + p_{ji}$$

Ingredients Networks - Pasta

Elena Camuffo, Laura Crosara, Matteo Moro

pairings		$\mathbf{C}\mathbf{N}$	$\mathbf{A}\mathbf{A}$	RA	KA	LP	RW
Nutmeg	Fresh chilli	X			X	X	
Liquid fresh cream	Carrots	X			X	X	
Tomato sauce	Pine nuts	х			X	x	
Butter	Mussels	х			X	х	
Salt	Nduja						X
Pig cheek	Pumpkin		X				
Pig cheek	Ricotta cheese	X					
Sausage	Pecorino			X			
Whole milk	Beans			x			
Whole milk	Onions golden		X		X	X	

	pairings	CN	AA	RA	KA	m LP	RW
cheese	sesame	X			X	X	
macrophyll	bean			X			
salt	sweet sauce		X				x
cabbage	lemon			x			
lemon	mushrooms maitake			x			
chicken	vegetables			X			
cabbage	cheese parmigiano			X			
consomme	perilla	X			X	x	
egg	lemon	X		X	X	х	
bacon	vinegar	X			X	X	

ITALY

pairir	$_{ m ngs}$	CN	AA	RA	KA	\mathbf{LP}	RW
fresh cream	chili	х		х	х	X	
black pepper	potato	x					
spices	bacon	X			X	X	
carrots	nuts		X				
canned tomatoes	pesto	Х			X	X	
carrots	pesto		x				
salt	pig cheek						X
lemon juice	chicken broth		x				
rosemary	chicken broth			x			
fresh cream	sugar	X		X	X	X	

JAPAN

TAIWAN

Ingredients Networks - Pasta

New Ingredient	Recipe
Black pepper	Durum wheat semolina, Water, Ricotta salata, Eggplant, Garlic,
	Vine-ripened tomatoes, Basil, Salt, Extra virgin olive oil
Vegetable broth	Semolina durum whole wheat, Water, Fresh onion, Mushrooms, Bacon,
	Cannellini beans, Rosemary, Extra virgin olive oil, Black pepper, Salt
apple	onion, anchovies, water, olive oil
Brandy	Chicken breast, Noodles, Potatoes, Snow peas, Carrots, Celery,
	Mushrooms, Leeks, Water, Fresh ginger, Parsley, Extra virgin olive oil, Black pepper, Salt
Almonds	streaky pork, durum wheat semolina, water, minced garlic,
	plum, cauliflower, mushroom, soft-boiled eggs, rice wine, salt, flour

New Ingredient	Recipe
mushroom	onion, meat, red wine, concentrated tomato paste, chicken broth, bay leaves,
	sugar, salt, durum wheat semolina, water, cheese, fresh thyme, black pepper
chia	streaky pork, durum wheat semolina, water,
	minced garlic, plum, cauliflower, mushroom, soft-boiled eggs, rice wine, salt, flour
cheese	durum wheat semolina, water, bacon, asparagus,
	shrimp, garlic, black pepper, rose salt, paprika, parsley leaf, cheese
basil leaves	durum wheat semolina, water, onion, cream, chicken breast, squid
avocado	durum wheat semolina, water, bacon, large tomatoes, green pepper, mushroom,
	cheese, ketchup, salt, black pepper

New Ingredient	Recipe
consomme	durum wheat semolina, water, salmon, olives oil
tomato	onion, bacon, garlic, olives oil, cream, salt, cheese, durum wheat semolina, water, juice, nut
soy sauce	chicken, salt, durum wheat semolina, water, avocado, clams, mayonnaise, onion, cod roe
onion	durum wheat semolina, water, saury, salt
pepper	durum wheat semolina, water, salmon, olives oil

