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KONINGSBERGA

Gt

How to walk through the city by crossing each
bridge only once?
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Graph G (V,€): network
1 Vertices (set V) : nodes, people, concepts

u Edg1es (set &): IiTnks, relatitons, asso%iations
technology social social

mathematics psychology cognition 4
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J A connection relationship can have a
privileged direction or can be mutual

1 Either a directed or an undirected link

0—0 00

1 If the network has only (un)directed links, it
IS also called itself (un)directed network

 Certain networks can have both types
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At first glance undirected = directed by
duplicating links, but not necessarily quite the
same though

Ann & Bob know

0 each other H

Carl sent an
email to Dana
>
<
Dana sent an

email to Carl
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o s "~ N w3
» . - - PN Q - [
BN network | nodes and links 3!
& Facebook Profiles and friendship undirected 2 L
2 #.  Instagram Accounts and followers directed
Q o the www Webpages and links directed
5 - citation Papers and references directed s
LT network
‘r social network People and undirected
friends/acquaintances -“ {
B ® movie network Actors and co-starring undirected 4
- genealogy People and parenthood directed :'.“
P aa , = u
? P

! ¥ O 2 n a & 0.
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‘ . - 3
SO notwork  [nodesandlinks  [type [N
Twitter Accounts & follows directed ot
& : WhatsApp People & messages directed #- L
WhatsApp People & contacts undirected
g 2 TikTok Accounts & friendship undirected &
ﬁ LinkedIn Acounts & friendship undirected “*
e TikTok Accounts & follows directed
- Pinterest People & image like directed m ‘
A - YouTube Accounts & followers directed AR 4:
‘-’: YouTube Accounts & collaborations undirected & ﬁ
& Ask Accounts & replies directed
1 LinkedIn Acounts & followers directed I
R S A n e O -
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Graph representations

visual plot, adjacency mantix, edge list
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d Multi-graphs (or pseudo-graphs)
Some network representations require

multiple links (e.g., number of citations
from one author to another)

multiple edges %mutlple edges

11
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d Weighted graph

Sometimes a weight is associated to a
link, e.g., to underline that the links
are not identical (strong/weak relationships)

Can be seen as a generalization of
multi-graphs (weight = # of links)

e.g., strength of a tie
0.2 = weak (acquaintances)
1 = strong (friends)
1.5 = stronger (close friends)
2.3 = very strong (best friends)

12
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J Edges can have signed values

positive if there is an agreement between ?

nodes 03
negative if there’s a disagreement

A 0.3 B

05 -0.9
0_3%/0.8

 This is typical of correlation networks
correlation = a measure of similarity

J More difficult to handle

13
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N

Sincerity Modesty

A personality network
(Costantini et al, 2015)

Fearfulness
Greed-

avoidance

Inquisitiveness

Unconventionality

:,/—\\\@"‘q‘!\tg ! Flexibility

__ D — —
— b L
_ =
gence Patience

Aestethic appreciation

—aa\Y

.
\
\
\

Creativity
Negative links are displayed in red a '/ Perfectionism
Organization
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d In many networks nodes do not interact
with themselves

J To account for self-interactions, we add
loops to represent them

self
loop

N

15
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 An adjacency matrix A = [a;] associated
to graph g has

i is the row index j is the column index

entries & = 0 if nodes / and j are not connected
if nodes /and j are connected then a;; # 0

this is dqo

0.3 1/ 0 0 <«—rowf

1 0 15 0.2
0O 15 0 23

0 0.12 23 0

column 2 16
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d Undirected graph = symmetric matrix

03 1 0 0
1 0. 15 0.2
0 1.5 0. 23

0 02 23 o]

—

17
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d The weight a; is associated to
i th row
J th column
directed edge j2 i starting from node j and leading to
node |

03 1 0 0,
_ |1 e 15 (0)
A=10 15 ENO]

18
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 |Giulla__|Marc__|Oliver |Thomas |Sarah  [Anna |
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Thomas 1
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which of these representations do you like best? 19
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scustont @raph plots may carry relevant info...

DI PADOVA US republicans and democrats interactions on Twitter (2020)

speaker of US house
of representatives

~ likes
il | mentions
Q osl B retweets
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J The adjacency matrix is typically sparse
good for tractability !

22
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~ likes

" mentions
B retweets

described by a set of adjacency matrices A,

e.g., one for likes, one for mentions, and one for retweets
23
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d So, what's the take-away so far?
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adjacency matrix edge list

/ N2 entries _
- L entries
123
1>4
125
224
225
325
4->6
526

©O - 2 O o O

s
.
1
1
1

_O

O - O 8 O -
o =~ o~ O o o

7
7
- O O O - -
,/
7
7/
A S5 O 2 A A
7/
/7

Which one do U think is better?
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Distances in graphs

and related concepts
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J Path

a sequence of interconnected nodes (meaning
each pair of nodes adjacent in the sequence are

connected by a link)

d Path length

# of links involved in the path (if the path
involves n nodes then the path link is n-7)

d Cycle

path where starting and
ending nodes coincide
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J Shortest path (between any two nodes)
the path with the minimum length, which is called

the distance The distance
between nodes
1and 8 is d18=5

it is not unique!

1 Diameter (of the network) The diameter is d=5
the highest distance in the network

28
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d Average path length

average distance between all nodes pairs (apply an
algorithm to all node couples, and take the average)

 In real networks distance between two randomly chosen nodes is
generally short

d  Milgram [1967]: 6 degrees of separation

d What does this mean?

We are more connected than we think
29
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DI PADOVA we and the US presidents

Granovetter’s
weak tie ;-)

30
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1 Connected graph (undirected)
for all couples (i,j) there exists a path connecting them

If disconnected, we count the # of connected components
(e.g., use BFS and iterate)

1 Giant component (the biggest one)

1 Isolates (the other ones) ?;??2838
—_— 01011000

/e A=|b1101000

—e ‘/ 00110000
\ e 00000011

/\ 0O00O0OO0/1 01

a 00000110
block-diagonal matrix 31
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J Abridge is a link between two

connected components

its removal would make the network disconnected

VN

01000000]
10110000
01011000
01101000

00000101

00000110
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Bipartite graphs

and semantic networks
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d Connections are available only between the
groups A and B
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Hashtags
Tweets
those who think they are crazy enough to
change the world eventually do. #GretaThunberg
#climatechange #ClimateCrisis

#ClimateAction #GretaThunberg #Greta .
#climatechange

Hopefully these kids will succeed where
past generations have failed. ﬂ #GlobalWarming
#TheResistance #FBR #ClimateChange

#Environment #Global\WWarming

#GretaThunberg

#Environment

The #environment can have a major effect .
on the human cardiovascular system. A #longevity
new study has found an increase in heat-
induced #heartattack risk in recent years.
Could #ClimateChange be a risk factor?
#longevity

35
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 Bipartite graphs represent memberships/relationships,
e.g., groups (A) to which people (B) belong

examples: movies/actors, classes/students, conferences/authors

d We can build separate networks (projections) for A and
B (sometimes this is useful)

in the movies/actors example being linked can be interpreted in
two ways: “actors in the same movie” (projection on B), or
“movies sharing the same actor” (projection on A)

36
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Nodes are linked
if they have a
common
neighbour in B

PS: we say that
nodes / and j have a
common neighbour k
if both i and j are
connected to k

Nodes are linked
if they have a
common
neighbour in A

37
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gretagmnbe rg
fndaysbtfuture

. ausvotes "

auspol

chmabstnke chmateemergency W ausvote32019
schoolstnl(e4chmate . extinctionrebellion A

: clumateaétlonnow cllmatecr isis -

cdnpoln
chmatechamgatsFee S fent

climateaction greennewdeal

- actonclimate :
: ‘fossitfulls©

worldenvironmentday .
~climate
energy

carbon Amnewabhenergy
globalwarming’ renewables

4 green

savetheplanet ; g
: earth * environment A it news

waltsiiution
sustainability

innovation

#climateaction tweets after Greta Thunberg
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(un)Directed graphs

Weighted and signed graphs
Adjacency matrix & edge list
Distances

Giant component, isolates, bridges
Bipartite graphs & projections

Takeaways so far

41



Degree centrality

a first approach to node importance
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In Network Science

Centrality

From Wikipedia, the free encyclopedia

For the statistical concept, see Central tendency.

In graph theory and network analysis, indicators of centrality
identify the most important vertices within a graph.
Applications include identifying the most influential person(s)
in a social network, key infrastructure nodes in the Internet or
urban networks, and super-spreaders of disease. Centrality
concepts were first developed in social network analysis, and
many of the terms used to measure centrality reflect their
sociological origin.“] They should not be confused with node
influence metrics, which seek to quantify the influence of
every node in the network.

Degree centrality |edit]
Main article: Degree (graph theory)

PageRank centrality |edit]

Main article: PageRank
Betweenness centrality |edit]

Main article: Betweenness centrality
Eigenvector centrality |edit]

Main article: Eigenvector centrality

Closeness centrality |edit] "

Main article: Closeness centrality
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d The degree k; of node i in an undirected

networks Is
the # of links j has to other nodes, or
the # of nodes jis linked to

k=1

The average degree is

<k>= ) ki/N=(1+3+2+2)/4
=2

45
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1 For directed networks we distinguish between
in-degree K/" = # of entering links
out-degree Kpeut= # of exiting links

(undirected: k/" = kevt due to the symmetry)

The average degree is
<k> =3 kpeut/N = (1+3+2+0)/4
=> ki"/N = (1+2+1+2)/4
= 3/2
46
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J A social-capital measure of cohesion
1 In-degree = importance as an Authority
J Out-degree = importance as a Hub

an influencer:
authority or hub?

In www: TR
O Authorities (quality as a content provider)
nodes that contain useful information, or having Hub \ »
a high number of edges pointing to them ® ® = 'Authomy

(e.g., course homepages) Site

O Hubs (quality as an expert)

trustworthy nodes, or nodes that link Hub @
many authorities (e.g., course bulletin)

47
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d The in (out) degree can be obtained by
summing the adjacency matrix over
rows (columns)

0 1, 0 o0

_ ol 1 o
A= o |1] 0o o
o \1) 1 0

48
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Real networks are sparse

d The maximum degree is N-1

J

In real networks <k> «< N-1

NETWORK

Internet

WWw

Mobile Phone Calls

Email

Actor Network
Citation Network

N

192,244
325,729

36,595
57,194

702,388
449,673

L

609,066
1,497,134

91,826
103,731

29,397,908
4,689,479

(k)

6.34
4.60

2.51
1.81

83.71
10.43
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Visualizing degree centrality

how to get useful insights on centrality
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by colour

Degree Centrality

107!
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v' a probability distribution o,

v p,= the fraction of nodes that have degree equal to k
v p, = # of nodes with degree k, divided by N

7] S Pk k=[22222222]

0.25 ---- -- y B

17 2 3 52
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d Inreal (large) networks, degrees have a
large range - log representation

0.5=1/2, i.e., half of the nodes have degree 1

10° / Ty y ......:;

0.5
. — 0.2=1/5, i.e., 1 node every 5 has degree 2
02 b—- -9+
101 @
I »
|
e
I “ ] "
1072 ! - nodes with high degree = hubs
& ’ ~, 5
I B
| > & -
1 node 102 p--q------------ -1-0
3 I
every 1000 = g ! ® @ sene 03
has degree — ! : .
27 I ‘:
X I3 B = 2 o aal PP le S 2 2.ans
104 53

100 k 10! 107



Scale-free networks

those that follow a power-law
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turation 10" E ) — y is the slope of
@ low I L) the approx.
degrees 1072 L ".. linear behaviour

P, — ‘.&

107~ "\\,_ 1

T — plateau

- — o—.' _ :. e o0 — @ hlgh

107 7 degrees
10_5 I I I R R T B N N A W W A 11 B |...I’.|||||| L1 ......-
10° 10 102 k 103 104

Why the name power-law? Because the (approx.) linear
behaviour in the log domain ensures

In(py) =c-y-Intk) > pk=CkY

95
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Distribution Of Node Linkages (log-log scale) LEFT
1
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S N semantic network
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é% 1072
T
2 1077 4
107 1
10°
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DI PADOVA of scale-free networks
° o ¢ ° *e .. o :
v\ ee/? ’ Small world e N0 ),
AN W2 Ultra small world hubs not A\ 2% P
o .‘ " ., large hubs significantly large A Y
oo.’ ... ¢ :o.o°.
I e et
e o ‘0 o o° ., Iy
® ® g ® 1 ¢ » - °
. . SCALE-FREE RANDOM ¢
REGIME REGIME
Indistinguishable
from a random network
Q D \?\\QV\
'\\0 N & N
\\\\0\2\’\06} \\\§ /\\<§\ \/@QQ,@%Q\\/\\%
SO ¥ SN
. . .

2 3 y, the slope
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DI PADOVA versus random networks

PN, SaN Scale-free 0 . o
Random ST frork e,
network — N | networ BT S I
LSS DT 0 e o o o
0.1 - ST -~ 102 L T
P | ®
p 3 L & J
‘ a network 10% 3 % 3
0.05 - with a scale 104 L J
105 = ]
10_6 L il Il i il 11 ul-
0 10 20 K 30 40 50 10° 10' 10 10
» Randomly wired network » Power-law network
» Has smaller hubs » Has big hubs
> Needs a linear plot » Needs a log-log plot
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DI PADOVA a simple concept that (partially) explains the power-law

Nodes link to the more connected nodes

e.g., think of www

This idea has a long history

1999

1923

George Kinsley Zipf
WEALTH DISTRIBUTION
Gyorgy Pdlya ECONOMIST Herbert Alexander Simon Robert Merton Albert-Lasz|6 Barabasi & Réka Albert

POLYA PROCESS 1925 ‘ 1941  MASTER EQUATION 19068  MATTHEW EFFECT PREFERENTIAL ATTACHMENT

MATHEMATICIAN Q @ POLITICAL SCIENTIST @ SOCIOLOGIST NETWORK SCIENTISTS
: . :

| - Matthew effect: “rich gets
George Udmy Yule - Robert Gibrat : Derek de Solla Price

YULE PROCESS PROPORTIONAL GROWTH - CUMULATIVE ADVANTAGE rlcher , 1.8, hlgh connectIVIty
‘ | - quantifies attractiveness
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1 Citation network

researchers decide what papers to read and cite by
“copying” references from papers they have read -
papers with more citations are more likely to be cited

J Social network

the more acquaintances an individual has, the higher
the chancer of getting new friends, i.e., we “copy” the
friends of friends - difficult to get friends if you have
none

J Semantic network

does the model apply here?
60
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DEGLI STUDI Att ra Ctive NesSs

DI PADOVA a further essential concept to explain the power-law

d There is an innate ability of a node to attract links
just a quality assessment of the individual

1 Otherwise oldest nodes would have an inherent

advantage and cannot be defeated (first mover’s

advantage), which is in contrast with intuition and
evidence

e.g., Altavista [1990] - Google [2000] - Facebook [2011] = Instagram [2027]
e.g., #parisagreement [2018] - #fridays4future [2019]
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DI PADOVA a visual example

node nOde
degree ' : , . . degree ,
. Attractiveness lo
(linear) N = 0.223 ( 93
2:3 * n=0.85 g i
kit) e 1n=0.991 4
2 |
3 '\Oﬂ
i ale
15 2 \\\
kit) o
1 L 1 — - 1 J
0 2000 4000 4 6000 8000 10000 1000 5000 10000 50000 100000
time time

n; can be measured by data scientists !
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Degree, degree distribution, loglog plot
Authorities and hubs

Power law, scale-free networks

Slope, Ultra-small-world regime
Preferential attachment

Attractiveness

HEEpEy Ny EY N
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