

Università Degli Studi di Padova

Social Network Analysis

A.Y. 23/24

Communication Strategies

Graphs

an introduction

Università DEGLI STUDI di Padova

Euler and the 7 bridges of Könisberg

 (Prussia, 1736) today Kaliningrad

How to walk through the city by crossing each bridge only once?

Università DEGLI STudi di Padova

Networks as graphs

Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$: network
\square Vertices (set \mathcal{V}) : nodes, people, concepts
\square Edges (set \mathcal{E}): links, relations, associations

Directed versus undirected

\square A connection relationship can have a privileged direction or can be mutual
\square Either a directed or an undirected link

If the network has only (un)directed links, it is also called itself (un)directed network
\square Certain networks can have both types

Directed versus undirected

\square At first glance undirected \rightarrow directed by duplicating links, but not necessarily quite the same though

Università
degli Studi

Some examples

di Padova

Università DEGLI STUDI Can U think of other social networks? di Padova

Graph representations

visual plot, adjacency mantix, edge list

Multi-graphs

\square Multi-graphs (or pseudo-graphs) Some network representations require multiple links (e.g., number of citations from one author to another)

- Weighted graph

Sometimes a weight is associated to a link, e.g., to underline that the links are not identical (strong/weak relationships)

Can be seen as a generalization of multi-graphs (weight = \# of links)


```
e.g., strength of a tie
    0.2 = weak (acquaintances)
    1 = strong (friends)
    1.5 = stronger (close friends)
    2.3 = very strong (best friends)
```


Signed graphs

\square Edges can have signed values
positive if there is an agreement between nodes
negative if there's a disagreement

\square This is typical of correlation networks
correlation $=$ a measure of similarity
\square More difficult to handle

Università
degli Studi

Signed graph example

 di PadovaA personality network

Self interactions

\square In many networks nodes do not interact with themselves
\square To account for self-interactions, we add loops to represent them

\square An adjacency matrix $A=\left[a_{i j}\right]$ associated to graph \mathcal{G} has

entries $a_{i j}=0$ if nodes i and j are not connected if nodes i and j are connected then $a_{i j} \neq 0$

Symmetries

\square Undirected graph = symmetric matrix

$$
A=\left[\begin{array}{cccc}
0.3 & 1 & 0 & 0 \\
1 & \ddots & 0 & 1.5 \\
0.2 \\
0 & 1.5 & 0 & 2.3 \\
0 & 0.2 & 2.3 & \cdots
\end{array}\right]
$$

\square Directed graph = asymmetric matrix

$$
A=\left[\begin{array}{cccc}
0.3 & 1 & 0 & 0 \\
1 & -0 & 1.5 & 0 \\
0 & 1.5 & 0 & 0 \\
0 & 0.2 & 2.3 & 0
\end{array}\right]
$$

Convention

\square The weight $a_{i j}$ is associated to
i th row
j th column
directed edge $j \rightarrow i$ starting from node j and leading to node i

$$
A=\left[\begin{array}{cccc}
0.3 & 1 & 0 & 0 \\
1 & \ddots & 0 & 1.5 \\
a_{2} \\
0 & 1.5 & 0 & 0 \\
0 & 0.2 & 0.3 & 0 \\
0 & \ddots & a_{34}
\end{array}\right]
$$

Università degli Studi di Padova

An example
which of these representations do you like best?
Giulia
which of these representations do you like best?

Università DEGLI STUDI di Padova

Graph plots may carry relevant info...
US republicans and democrats interactions on Twitter (2020)

... or may not!

Real networks are sparse

\square The adjacency matrix is typically sparse good for tractability !

Multi-layer networks

described by a set of adjacency matrices \boldsymbol{A}_{ℓ} e.g., one for likes, one for mentions, and one for retweets

A question 4 U

\square So, what's the take-away so far?

Università DEGLI STUDI di Padova

Storing network data

 adjacency matrix versus edge list$$
\begin{aligned}
& \text { adjacency matrix } \\
& 1 \quad N^{2} \text { entries } \\
& \text { edge list } \\
& \text { L entries } \\
& 1 \rightarrow 3 \\
& 1 \rightarrow 4 \\
& 1 \rightarrow 5 \\
& 2 \rightarrow 4 \\
& 2 \rightarrow 5 \\
& 3 \rightarrow 5 \\
& 4 \rightarrow 6 \\
& 5 \rightarrow 6
\end{aligned}
$$

Which one do U think is better?

Distances in graphs and related concepts

- Path

a sequence of interconnected nodes (meaning each pair of nodes adjacent in the sequence are connected by a link)

- Path length

\# of links involved in the path (if the path involves n nodes then the path link is $n-1$)
\square Cycle
path where starting and ending nodes coincide

Distances

\square Shortest path (between any two nodes) the path with the minimum length, which is called the distance
it is not unique!
\square Diameter (of the network)

the highest distance in the network

Small world

- Average path length
average distance between all nodes pairs (apply an algorithm to all node couples, and take the average)
\square In real networks distance between two randomly chosen nodes is generally short
- Milgram [1967]: 6 degrees of separation
$\square \quad$ What does this mean?

We are more connected than we think

Small world

 di Padova we and the US presidents

Granovetter's weak tie ;-)

Connectivity

- Connected graph (undirected)
for all couples (i,j) there exists a path connecting them
if disconnected, we count the \# of connected components (e.g., use BFS and iterate)
\square Giant component (the biggest one)
\square Isolates (the other ones)

$$
A=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

Bridges

\square A bridge is a link between two connected components

its removal would make the network disconnected

Bipartite graphs

and semantic networks

Bipartite graphs

\square Connections are available only between the groups \mathcal{A} and \mathcal{B}

Bipartite graph example

$\#$
 Hashtags

those who think they are crazy enough to change the world eventually do. \#climatechange \#ClimateCrisis
\#ClimateAction \#GretaThunberg \#Greta

Hopefully these kids will succeed where past generations have failed. \#TheResistance \#FBR \#ClimateChange \#Environment \#GlobalWarming \#GretaThunberg

Meaning

\square Bipartite graphs represent memberships/relationships, e.g., groups (\mathcal{A}) to which people (\mathcal{B}) belong
examples: movies/actors, classes/students, conferences/authors
\square We can build separate networks (projections) for \mathcal{A} and \mathcal{B} (sometimes this is useful)
in the movies/actors example being linked can be interpreted in two ways: "actors in the same movie" (projection on \mathcal{B}), or "movies sharing the same actor" (projection on \mathcal{A})

Abstract example

Nodes are linked if they have a common neighbour in \mathcal{B}

PS: we say that nodes i and j have a common neighbour k if both i and j are connected to k

Nodes are linked if they have a common neighbour in \mathcal{A}

Università
DEGLI STudi di Padova

Projection on a semantic network

 \#hashtags that appear in the same tweet are linked

Università
DEGLI STudi di Padova

Projection on a semantic network

words that appear in the same tweet are linked

\#metoo tweets

Takeaways so far

- (un)Directed graphs
- Weighted and signed graphs
\square Adjacency matrix \& edge list
- Distances
- Giant component, isolates, bridges
\square Bipartite graphs \& projections

Degree centrality
 a first approach to node importance

The notion of centrality

Centrality

From Wikipedia, the free encyclopedia

For the statistical concept, see Central tendency.
In graph theory and network analysis, indicators of centrality
 identify the most important vertices within a graph. Applications include identifying the most influential person(s) in a social network, key infrastructure nodes in the Internet or urban networks, and super-spreaders of disease. Centrality concepts were first developed in social network analysis, and many of the terms used to measure centrality reflect their sociological origin. ${ }^{[1]}$ They should not be confused with node influence metrics, which seek to quantify the influence of every node in the network.

Degree centrality [edit]
Main article: Degree (graph theory)

PageRank centrality

Main article: PageRank
Betweenness centrality [edit]
Main article: Betweenness centrality
Eigenvector centrality [edit]
Main article: Eigenvector centrality

Node degree

\square The degree k_{i} of node i in an undirected networks is
the \# of links i has to other nodes, or the \# of nodes i is linked to

The average degree is

$$
\begin{aligned}
<\mathrm{k}> & =\sum_{i} k_{i} / N=(1+3+2+2) / 4 \\
& =2
\end{aligned}
$$

Node degree

directed networks

\square For directed networks we distinguish between
in-degree $k_{i}^{\text {in }}=\#$ of entering links
out-degree k_{i} out $=\#$ of exiting links
(undirected: $k_{i}^{\text {jn }}=k_{i}^{\text {out }}$ due to the symmetry)

The average degree is

$$
\begin{aligned}
<\mathrm{k}> & =\sum k_{i}^{\text {out }} / N=(1+3+2+0) / 4 \\
& =\sum k_{i}^{\text {in }} / N=(1+2+1+2) / 4 \\
& =3 / 2
\end{aligned}
$$

Meaning

\square A social-capital measure of cohesion \square In-degree = importance as an Authority \square Out-degree = importance as a Hub

In www:
$\square \quad$ Authorities (quality as a content provider)
nodes that contain useful information, or having a high number of edges pointing to them (e.g., course homepages)
\square Hubs (quality as an expert)
trustworthy nodes, or nodes that link many authorities (e.g., course bulletin)

Adjacency matrix and degree

\square The in (out) degree can be obtained by summing the adjacency matrix over rows (columns)

Real networks are sparse

\square The maximum degree is $\mathrm{N}-1$
] In real networks <k> << N-1

NETWORK	N	L	$\langle k\rangle$
Internet	192,244	609,066	6.34
WWW	325,729	$1,497,134$	4.60
Mobile Phone Calls	36,595	91,826	2.51
Email	57,194	103,731	1.81
Science Collaboration	23,133	93,439	8.08
Actor Network	702,388	$29,397,908$	83.71
Citation Network	449,673	$4,689,479$	10.43

Visualizing degree centrality

how to get useful insights on centrality

by size

Degree distribution

\checkmark a probability distribution p_{k}
$\checkmark \quad p_{k}=$ the fraction of nodes that have degree equal to k
$\checkmark \quad p_{k}=\#$ of nodes with degree k, divided by N

Log-log plot

\square In real (large) networks, degrees have a large range \rightarrow log representation

Scale-free networks

those that follow a power-law

Università DEGLI STUdI di Padova

The power law typical of social networks

Why the name power-law? Because the (approx.) linear behaviour in the log domain ensures

$$
\ln \left(p_{k}\right)=c-\gamma \cdot \ln (k) \quad \rightarrow \quad p_{k}=C k^{-\gamma}
$$

Examples

from past projects

In Degrees Distribution

Out Degrees Distribution

Università DEGLI STUDI di Padova

The ultra-small-world

of scale-free networks

nall world
hubs not significantly large

RANDOM

REGIME

Indistinguishable
from a random network

3
γ, the slope

Scale-free networks

 versus random networks
> Randomly wired network
$>$ Has smaller hubs
$>$ Needs a linear plot

> Power-law network
> Has big hubs
$>$ Needs a log-log plot

Preferential attachment

Nodes link to the more connected nodes

e.g., think of www

This idea has a long history

György Pólya PÓLYA PROCESS mathematician

George Kinsley Zipf WEALTH DISTRIBUTION
 STATISTICIAN

ECONOMIST

Herbert Alexander Simon 1941 MASTEREQUATION

Robert Gibrat PROPORTIONAL GROWTH ECONOMIST

1976

Robert Merton MATTHEW EFFECT SOCIOLOGIST

1999

Albert-László Barabási \& Réka Albert PREFERENTIAL ATTACHMENT network scientists

Matthew effect: "rich gets richer", i.e., high connectivity quantifies attractiveness

The copying model

 explaining preferential attachment- Citation network
researchers decide what papers to read and cite by "copying" references from papers they have read \rightarrow papers with more citations are more likely to be cited

\square Social network

the more acquaintances an individual has, the higher the chancer of getting new friends, i.e., we "copy" the friends of friends \rightarrow difficult to get friends if you have none

- Semantic network
does the model apply here?

Attractiveness

\square There is an innate ability of a node to attract links just a quality assessment of the individual
\square Otherwise oldest nodes would have an inherent advantage and cannot be defeated (first mover's advantage), which is in contrast with intuition and evidence
e.g., Altavista [1990] \rightarrow Google [2000] \rightarrow Facebook [2011] \rightarrow Instagram [202?]
e.g., \#parisagreement [2018] \rightarrow \#fridays4future [2019]

Attractiveness

a visual example

η_{i} can be measured by data scientists !

Degree, degree distribution, loglog plot

- Authorities and hubs
- Power law, scale-free networks
\square Slope, Ultra-small-world regime
- Preferential attachment
- Attractiveness

