

UNIVERSITÀ DEGLI STUDI DI PADOVA

Social Network Analysis

A.Y. 23/24

Communication Strategies

Euler and the 7 bridges of Könisberg (Prussia, 1736) today Kaliningrad

How to walk through the city by crossing each bridge only once?

Networks as graphs

Università degli Studi di Padova

Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$: network Use Vertices (set \mathcal{V}) : nodes, people, concepts Edges (set \mathcal{E}): links, relations, associations mathematics

Directed versus undirected

- A connection relationship can have a privileged direction or can be mutual
 - Either a directed or an undirected link

- If the network has only (un)directed links, it is also called itself (un)directed network
 - Certain networks can have both types

Directed versus undirected

At first glance undirected → directed by duplicating links, but not necessarily quite the same though

UNIVERSITÀ DEGLI STUDI di Padova

Some examples

network	nodes and links	type
Facebook	Profiles and friendship	undirected
Instagram	Accounts and followers	directed
the www	Webpages and links	directed
citation network	Papers and references	directed
social network	People and friends/acquaintances	undirected
movie network	Actors and co-starring	undirected
genealogy	People and parenthood	directed

1

Università degli Studi di Padova

4

1. 5. 1. 5.

Can U think of other social networks?

101

5 3

N 11

/			A. 4
	network	nodes and links	type
	Twitter	Accounts & follows	directed
	WhatsApp	People & messages	directed
	WhatsApp	People & contacts	undirected
2	TikTok	Accounts & friendship	undirected
1	LinkedIn	Acounts & friendship	undirected
·	TikTok	Accounts & follows	directed
7	Pinterest	People & image like	directed
	YouTube	Accounts & followers	directed
-	YouTube	Accounts & collaborations	undirected
.	Ask	Accounts & replies	directed
	LinkedIn	Acounts & followers	directed
			1

Generality of representation

Graph representations

visual plot, adjacency mantix, edge list

Multi-graphs

Multi-graphs (or pseudo-graphs) Some network representations require multiple links (e.g., number of citations from one author to another)

Weighted graphs

Weighted graph

Sometimes a weight is associated to a link, e.g., to underline that the links are not identical (strong/weak relationships)

Can be seen as a generalization of multi-graphs (weight = # of links)

e.g., strength of a tie
0.2 = weak (acquaintances)
1 = strong (friends)
1.5 = stronger (close friends)
2.3 = very strong (best friends)

Signed graphs

Edges can have signed values

positive if there is an agreement between nodes negative if there's a disagreement

- This is typical of correlation networks correlation = a measure of similarity
- More difficult to handle

Signed graph example

Self interactions

In many networks nodes do not interact with themselves

To account for self-interactions, we add loops to represent them

Adjacency matrix

An adjacency matrix $A = [a_{ij}]$ associated to graph G has is the row index

entries $a_{ij} = 0$ if nodes *i* and *j* are **not connected** if nodes *i* and *j* are **connected** then $a_{ij} \neq 0$

Symmetries

Undirected graph = symmetric matrix

Directed graph = asymmetric matrix

Convention

The weight a_{ij} is associated to

- *i* th row
- j th column
- directed edge $j \rightarrow i$ starting from node j and leading to node i

An example which of these representations do you like best?

which of these representations do you like best?

Graph plots may carry relevant info...

US republicans and democrats interactions on Twitter (2020)

... or may not!

Università degli Studi di Padova

Real networks are sparse

The adjacency matrix is typically sparse

good for tractability !

22

Multi-layer networks

described by a set of adjacency matrices A_{ℓ} e.g., one for likes, one for mentions, and one for retweets

A question 4 U

□ So, what's the take-away so far?

Storing network data adjacency matrix versus edge list

Which one do U think is better?

Distances in graphs

and related concepts

Path

a sequence of interconnected nodes (meaning each pair of nodes adjacent in the sequence are connected by a link)

Path length

of links involved in the path (if the path involves n nodes then the path link is n-1)

Cycle

path where starting and ending nodes coincide

Università degli Studi di Padova

Distances

Shortest path (between any two nodes) the path with the minimum length, which is called the distance

it is not unique! Diameter (of the network) the highest distance in the network

28

Small world

Average path length

average distance between all nodes pairs (apply an algorithm to all node couples, and take the average)

- In real networks distance between two randomly chosen nodes is generally short
- □ Milgram [1967]: 6 degrees of separation

What does this mean?We are more connected than we think

Small world we and the US presidents

Università degli Studi di Padova

Connectivity

Connected graph (undirected)

for all couples (*i*,*j*) there exists a path connecting them

if **disconnected**, we count the # of connected components (e.g., use BFS and iterate)

- Giant component (the biggest one)
- □ Isolates (the other ones)

A bridge is a link between two connected components

its removal would make the network disconnected

Bipartite graphs

and semantic networks

Bipartite graphs

Bipartite graph example

Meaning

Bipartite graphs represent memberships/relationships,
 e.g., groups (A) to which people (B) belong

examples: movies/actors, classes/students, conferences/authors

We can build separate networks (projections) for A and B (sometimes this is useful)

in the movies/actors example being linked can be interpreted in two ways: "actors in the same movie" (projection on \mathcal{B}), or "movies sharing the same actor" (projection on \mathcal{A})

Abstract example

Projection on a semantic network #hashtags that appear in the same tweet are linked

#climateaction tweets after Greta Thunberg

UNIVERSITÀ

DEGLI STUDI

di Padova

Projection on a semantic network words that appear in the same tweet are linked

survivor olence wor conflict harassment sav powei continue ^{play}part space dav action romote fact III refuge ensure society voma peop men mination income work nequality empowe support start decision difference participation make health education Wan ome see inspire medium. ousiness time give stand stereotype tamily community

activist

#metoo tweets

Takeaways so far

- (un)Directed graphs
- Weighted and signed graphs
- Adjacency matrix & edge list
- Distances
- Giant component, isolates, bridges
- Bipartite graphs & projections

Degree centrality

a first approach to node importance

The notion of centrality In Network Science

Centrality

From Wikipedia, the free encyclopedia

For the statistical concept, see Central tendency.

In graph theory and network analysis, indicators of **centrality** identify the most important vertices within a graph. Applications include identifying the most influential person(s) in a social network, key infrastructure nodes in the Internet or urban networks, and super-spreaders of disease. Centrality concepts were first developed in social network analysis, and many of the terms used to measure centrality reflect their sociological origin.^[1] They should not be confused with node influence metrics, which seek to quantify the influence of every node in the network.

Degree centrality [edit] Main article: Degree (graph theory) PageRank centrality [edit] Main article: PageRank Betweenness centrality [edit] Main article: Betweenness centrality Eigenvector centrality [edit]

Main article: Eigenvector centrality

Closeness centrality [edit]

Main article: Closeness centrality

An example of node centrality

museums network

The study

.

Node degree undirected networks

The degree k_i of node i in an undirected networks is the # of links i has to other nodes, or

the # of nodes *i* is linked to

The average degree is

$$<\mathbf{k}> = \sum_{i} k_i / N = (1+3+2+2)/4$$

= 2

Node degree directed networks

□ For directed networks we distinguish between in-degree k_i^{in} = # of entering links out-degree k_i^{out} = # of exiting links

Meaning

an influencer:

authority or hub?

A social-capital measure of cohesion In-degree = importance as an Authority Out-degree = importance as a Hub

In www:

Authorities (quality as a content provider)

nodes that contain useful information, or having a high number of edges pointing to them (e.g., course homepages)

Hubs (quality as an expert)

trustworthy nodes, or nodes that link many authorities (e.g., course bulletin)

Adjacency matrix and degree

The <u>in</u> (out) degree can be obtained by summing the adjacency matrix over rows (columns)

 $k_2^{in}=2$

0

0

0

0

Real networks are sparse

The maximum degree is *N-1* In real networks <*k*> ≪ *N-1*

NETWORK	Ν	L	$\langle k angle$
Internet WWW	192,244 325,729	609,066 1,497,134	6.34 4.60
Mobile Phone Calls	36,595	91,826	2.51
Email	57,194	103,731	1.81
Science Collaboration	23,133	93,439	8.08
Actor Network	702,388	29,397,908	83.71
Citation Network	449,673	4,689,479	10.43

Visualizing degree centrality

how to get useful insights on centrality

Graphical representations of degree centrality

by size

by colour

Degree distribution

- \sim a <u>probability</u> distribution p_k
- ✓ p_k = the fraction of nodes that have degree equal to *k*
- ✓ p_k = # of nodes with degree *k*, divided by *N*

Log-log plot

In real (large) networks, degrees have a large range → log representation

Scale-free networks

those that follow a power-law

Why the name power-law? Because the (approx.) linear behaviour in the log domain ensures

$$\ln(p_k) = c - \gamma \cdot \ln(k) \quad \rightarrow \quad p_k = C k^{-\gamma}$$

55

Examples from past projects

In Degrees Distribution

Scale-free networks versus random networks

Needs a linear plot

Needs a log-log plot

a simple concept that (partially) explains the power-law

Nodes link to the more connected nodes

e.g., think of www This idea has a long history

The copying model explaining preferential attachment

Citation network

researchers decide what papers to read and cite by "copying" references from papers they have read \rightarrow papers with more citations are more likely to be cited

Social network

the more acquaintances an individual has, the higher the chancer of getting new friends, i.e., we "copy" the friends of friends \rightarrow difficult to get friends if you have none

Semantic network

does the model apply here?

Attractiveness a further essential concept to explain the power-law

□ There is an innate ability of a node to attract links just a quality assessment of the individual

Otherwise oldest nodes would have an inherent advantage and cannot be defeated (*first mover's advantage*), which is in contrast with intuition and evidence

e.g., Altavista [1990] → Google [2000] → Facebook [2011] → Instagram [202?]

e.g., #parisagreement [2018] → #fridays4future [2019]

Attractiveness a visual example

 η_i can be measured by data scientists !

Takeaways

- Degree, degree distribution, loglog plot
- Authorities and hubs
- Power law, scale-free networks
- Slope, Ultra-small-world regime
- Preferential attachment
- Attractiveness