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Communication Strategies
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PageRank
a centrality measure based on the web
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What is PageRank?
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How to organise the web?
links as votes
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q the higher the number of 
incoming links, the more 
important a node

q the more important a    node, 
the more valuable the output 
links



PageRank idea
network flow
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Step 1: spread (evenly) 
information (on centrality) 
from each node
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2

22

2

3
1

11 in the web this 
corresponds to the idea 
that starting from a web 
page you choose with 
equal probability one of 
the sites linked by the 
page



PageRank idea
network flow
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Step 2: collect spreaded
information at each node
(until convergence)

2

2

1

1

1
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in the web this roughly 
corresponds to the 

chance (probability) of 
ending in a specific web 

page



Example
random flow on a friends’ network

7

1
2

3

4

Giulia
5

6

Marc

Oliver

Thomas

Sarah

Anna

0.1667    0.1806    0.1991    0.1723    0.2025
0.1667    0.0972    0.1505    0.1040    0.1436
0.1667    0.0972    0.1366    0.1179    0.1287
0.1667    0.2222    0.1574    0.2168    0.1614
0.1667    0.3056    0.2060    0.2851    0.2203
0.1667    0.0972    0.1505    0.1040    0.1436

0.1783    0.1848    0.1874    0.1875    0.1875
0.1153    0.1222    0.1249    0.1250    0.1250
0.1242    0.1248    0.1250    0.1250    0.1250
0.2020    0.1917    0.1876    0.1875    0.1875
0.2649    0.2543    0.2501    0.2500    0.2500
0.1153    0.1222    0.1249    0.1250    0.1250

t=1 2 3 4 5

10 20 50 75 100

Sarah
Anna

Thomas
Oliver
Marc
Giulia

Equal to 
(normalized) 

degree centrality 
in undirected 
networks !!!

Equally likely 
assignment 
to start with



Teleportation
as a method to strenghten the result
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Idea: 

the surfer does not 
necessarily move to one 
of the links of the page 
she/he is viewing:

q it does with probability, say c = 85%

q with probability 1 – c = 15% it might jump to a 
random page (according to a predetermined policy)



Example
teleportation on a friends’ network – random policy
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1
2

3

4

Giulia
5

6

Marc

Oliver

Thomas

Sarah

Anna

t=1 2 3 4 5

10 20 50 75 100

Sarah
Anna

Thomas
Oliver
Marc
Giulia

not anymore 
identical to 

degree 
centrality !!!

0.1667    0.1785    0.1919    0.1754    0.1912
0.1667    0.1076    0.1461    0.1176    0.1382
0.1667    0.1076    0.1361    0.1246    0.1302
0.1667    0.2139    0.1671    0.2035    0.1746
0.1667    0.2847    0.2128    0.2614    0.2276
0.1667    0.1076    0.1461    0.1176    0.1382

0.1820    0.1839    0.1840    0.1840    0.1840
0.1273    0.1293    0.1294    0.1294    0.1294
0.1283    0.1285    0.1285    0.1285    0.1285
0.1902    0.1873    0.1871    0.1871    0.1871
0.2449    0.2419    0.2417    0.2417    0.2417
0.1273    0.1293    0.1294    0.1294    0.1294



Discussion
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q PageRank can capture the subtleties of networks
q Similar, but more reliable than degree
q Simple to implement (scalable)
q Want to see this in your projects



Visualizing PageRank
a comparison with degree centrality
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PageRank on a semantic network
2019 hashtag network related to #climatechange

(from Twitter, after #gretathunberg)
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Example of PageRank centrality
wikipedia administrator elections and vote history data

https://snap.stanford.edu/data/wiki-Vote.html
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Authorities Hubs

uses the adjacency matrix for 
spreading

uses the transposed adjacency matrix 
for spreading (spreading backwards)

https://snap.stanford.edu/data/wiki-Vote.html


PageRank versus degree centrality
wikipedia administrator elections and vote history data
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Authorities Hubs

out-degreein-degree

PageRank hubPageRank authority



PageRank versus degree authorities
wikipedia administrator elections and vote history data
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Degree PageRank



PageRank versus degree hubs
wikipedia administrator elections and vote history data
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Degree PageRank



Local PageRank
measuring closeness to a node, i.e., friendship
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Idea
q Measure similarity or

closeness to node i by 
applying PageRank with 
teleport set to node i only

Result
q Measures direct and 

indirect multiple 
connections, their quality, 
degree or weight

Measuring closeness: LocalPageRank
measure similarity to a node

18



Example
who’s Sara’s best friend? Policy = jump back to Sara
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1

2

3

4

Giulia
5

6

Marc

Oliver

Thomas

Sarah

Anna

t=1 2 3 4 5

10 20 50 75 100

Sarah

Anna

Thomas
Oliver

Marc
Giulia

0    0.2125    0.1222    0.2096    0.1290
0    0.2125    0.0319    0.1705    0.0708
0    0.2125    0.0921    0.1369    0.1127
0         0        0.2408    0.0617    0.2043

1.0000    0.1500    0.4811    0.2508    0.4125
0    0.2125    0.0319    0.1705    0.0708

0.1743    0.1653    0.1647    0.1647    0.1647
0.1238    0.1144    0.1138    0.1138    0.1138
0.1206    0.1199    0.1199    0.1199    0.1199
0.1285    0.1426    0.1434    0.1434    0.1434
0.3290    0.3435    0.3444    0.3444    0.3444
0.1238    0.1144    0.1138     0.1138    0.1138

0.1647

0.
14

34



Example
who’s Giulia’s best friend? Policy = jump back to Giulia
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1
2

3

4

Giulia
5

6

Marc

Oliver

Thomas

Sarah

Anna

t=1 2 3 4 5

10 20 50 75 100

Sarah
Anna

Thomas
Oliver
Marc
Giulia0.2909    0.2985    0.2989    0.2989    0.2989

0.0848    0.0926    0.0931    0.0931    0.0931
0.1309    0.1313    0.1314    0.1314    0.1314
0.1763    0.1645    0.1638    0.1638    0.1638
0.2324    0.2204    0.2197    0.2197    0.2197
0.0848    0.0926    0.0931    0.0931    0.0931

1.0000      0.1500    0.4109    0.2403    0.3404
0              0     0.1405    0.0467    0.1262
0     0.2833     0.1027    0.1510    0.1275
0     0.2833     0.0425    0.2358    0.1078
0     0.2833     0.1629    0.2795    0.1719
0              0     0.1405    0.0467    0.1262

0.2197

Local PageRank is 
NOT symmetric!



Local PageRank versus degree
authorities

21

Local PageRank 1-hop out-neighbours

neighbours authority score =
local node à neighbours



Example
what is the most related copnference to ICDM?
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Top 10 ranking results 

ICDM = international conf. on data mining
KDD = knowledge discovery and data mining



Want to know about a specific 
topic? TopicSpecific PageRank

Poilicy = jump back, at random, to 
one of the nodes of the topic

Measuring closeness to a topic
topic specific PageRank
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TopicSpecific PageRank example
in semantic networks
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1

2

3

Tweets

Hashtags

those who think they are crazy enough to 
change the world eventually do. 
#climatechange #ClimateCrisis

#ClimateAction #GretaThunberg #Greta
#climatechange

#GretaThunberg4

5

6

7

8

Hopefully these kids will succeed where
past generations have failed.

#TheResistance #FBR #ClimateChange
#Environment  #GlobalWarming

#GretaThunberg

#GlobalWarming

#Environment

The #environment can have a major effect
on the human cardiovascular system. A 

new study has found an increase in heat-
induced #heartattack risk in recent years. 
Could #ClimateChange be a risk factor? 

#longevity

#longevity

Topic 1

Topic 2

Tweet 1 is assigned to Topic 1 !!!

0.1234

0.0923



Community detection
and related concepts
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Conceptual picture of a network
explaining the role of community detection
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Cluster/Community

(strong tie)

(weak tie)
Bridge

q We often think of networks looking like this
q But, where does this idea come from?



Granovetter’s explanation
Granovetter, The strength of weak ties [1973]

https://www.jstor.org/stable/pdf/2776392.pdf
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Q: How do people discovered their new jobs?
A: Through personal contacts, and mainly through 
acquaintances rather than through close friends

Remark: Good jobs are a scarce resource
Conclusion: 
q Structurally embedded edges are also socially strong, but are 

heavily redundant in terms of information access
q Long-range edges spanning different parts of the network are 

socially weak, but allow you to gather information from different 
parts of the network (and get a job)

Local cluster/community
Strong ties

Bridges
Weak ties

https://www.jstor.org/stable/pdf/2776392.pdf


Local bridges 
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q An edge is a bridge if deleting it the nodes it connects fall 
into different components

this is extremely rare, e.g., because of small world properties

q An edge is a local bridge if, by deleting it, the nodes it 
connects have a span (distance) greater than 2, i.e., if they
do not have friends in common

common friends imply belonging to a triadic closure



Strong triadic closure
friends/relatives and acquaintances

29

Strong triadic closure property – If a generic node B is strongly tied 
with A and C, then A and C are connected (either weakly or 
strongly) 

Assume two categories of edges: 
q Strong ties (close friends) 
q Weak ties (acquaintances) 

Remark. If node B is strongly tied with A and C, then A and C 
are very likely to be connected (either weakly or strongly), that 
is



Granovetter’s claim
under strong triadic closure
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Claim: 
q Under the strong triadic closure property, local bridges are 

weak ties (if at least one of their nodes belongs to at least 
two strong ties) 

Proof:
q By contradiction



Community detection
the general approach
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q Granovetter’s theory suggests that networks are 
composed of tightly connected sets of nodes (i.e., 
communities), loosely connected between them

q We want to be able to automatically find such 
densely connected group of nodes

q We look for unsupervised methods, as most of the 
times no ground truth is available

q We look for a measure of the goodness of a 
community assignment, to be able to compare the 
performance of different algorithms

q Applications in:
social networks
functional brain networks in neuroscience
scientific interactions

REVIEW ARTICLES | INSIGHT NATURE PHYSICS DOI:10.1038/NPHYS2162

Figure 2 |A network of collaborations among scientists at a research
institute. Nodes in this network represent the scientists and there is an

edge between any pair of scientists who co-authored a published paper

during the years of the study. Colours represent communities, as

discovered using a modularity-maximization technique.

leader or principal investigator of some kind. Distinctions such as
these, which may be crucial for understanding the behaviour of
the system, become apparent only when one looks at structure on
the community level.

The network in this particular example has the nice property that
it is small enough and sparse enough to be drawn clearly on the page.
One does not need any calculations to pick out the communities in
this case: a good eye will do the job. However, when we are working
with larger or denser networks, networks that can have thousands
or even millions of nodes (or a smaller number of nodes but very
many edges), clear visualization becomes impossible and we must
turn instead to algorithmic methods for community detection and
the development of such methods has been a highly active area of
research in the past few years15.

The community-detection problem is challenging in part be-
cause it is not verywell posed. It is agreed that the basic problem is to
find locally dense regions in a network, but this is not a precise for-
mulation. If one is to create a method for detecting communities in
amechanical way, onemust first define exactly what onemeans by a
community. Researchers have been aware of this issue from the out-
set and have proposed a wide variety of definitions, based on counts
of edges within and between communities, counts of paths across
networks, spectral properties of network matrices, information-
theoretic measures, randomwalks andmany other quantities. With
this array of definitions comes a corresponding array of algorithms
that seek to find the communities so defined14,15,19–31. Unfortu-
nately, it is no easy matter to determine which of these algorithms
are the best, because the perception of good performance itself
depends on how one defines a community and each algorithm
is necessarily good at finding communities according to its own

definition. To get around this circularity, we typically take one of
two approaches. In the first, algorithms are tested against real-world
networks for which there is an accepted division into communities,
often based on additionalmeasurements that are independent of the
network itself, such as interviews with participants in a social net-
work or analysis of the text of web pages. If an algorithm can reliably
find the accepted structure then it is considered successful. In the
second approach, algorithms are tested against computer-generated
networks that have some form of community structure artificially
embedded within them. A number of standard benchmark net-
works have been proposed for this purpose, such as the ‘four groups’
networks14 or so-called the LFR benchmark networks32. A number
of studies have been published that compare the performance of
proposed algorithms in these benchmark tests33,34. Although these
approaches do set concrete targets for performance of community-
detectionmethods, there is room for debate over whether those tar-
gets necessarily align with good performance in broader real-world
situations. If we tune our algorithms to solve specific benchmark
problems we run the risk of creating algorithms that solve those
problemswell but other (perhapsmore realistic) problems poorly.

This is a crucial issue and one that is worth bearing inmind as we
take a look in the following sections at the present state of research
on community detection. As we will see, however, researchers have,
in spite of the difficulties, come up with a range of approaches that
return real, useful information about the large-scale structure of
networks, and in the process have learned much, both about indi-
vidual networks that have been analysed and about mathematical
methods for representing and understanding network structure.

Hierarchical clustering
Studies of communities in networks go back at least to the 1970s,
when a number of techniques were developed for their detection,
particularly in computer science and sociology. In computer
science the problem of graph partitioning35, which is similar
but not identical to the problem of community detection, has
received attention for its engineering applications, but the methods
developed, such as spectral partitioning36 and the Kernighan–
Lin algorithm37, have also been fruitfully applied in other areas.
However, it is thework of sociologists that is perhaps themost direct
ancestor ofmodern techniques of community detection.

An early, and still widely used, technique for detecting
communities in social networks is hierarchical clustering5,11.
Hierarchical clustering is in fact not a single technique but an
entire family of techniques, with a single central principle: if we
can derive a measure of how strongly nodes in a network are
connected together, then by grouping the most strongly connected
we can divide the network into communities. Specific hierarchical
clusteringmethods differ on the particularmeasure of strength used
and on the rules by which we group strongly connected nodes.
Most common among themeasures used are the so-called structural
equivalence measures, which focus on the number nij of common
network neighbours that two nodes i, j have. In a social network
of friendships, for example, two people with many mutual friends
are more likely to be close than two people with few and thus a
count of mutual friends can be used as a measure of connection
strength. Rather than using the raw count nij , however, one typically
normalizes it in some way, leading to measures such as the Jaccard
coefficient and cosine similarity. For example, the cosine similarity
�ij between nodes i and j is defined by

�ij =
nijp
kikj

where ki is the degree of node i (that is, the number of con-
nections it has). This measure has the nice property that its

26 NATURE PHYSICS | VOL 8 | JANUARY 2012 | www.nature.com/naturephysics



The core periphery model
Lescovec, Lang, Dasgupta, Mahoney, Community Structure in Large Networks: 

Natural Cluster Sizes and the Absence of Large Well-Defined Clusters (2008)
https://arxiv.org/abs/0810.1355

32

Can we find a justification for this?

6 Leskovec, Lang, Dasgupta, and Mahoney

(a) Typical NCP plot (b) Caricature of network structure

Figure 2: (a) Typical network community profile plot for a large social or information network: networks have
better and better communities up to a size scale of ≈ 100 nodes, and after that size scale communities “blend-in”
with the rest of the network (red curve). However, real networks still have more structure than their randomized
(conditioned on the same degree distribution) counterparts (black curve). Even more surprisingly, if one allows
for disconnected communities (blue curve), the community quality scores often get even better (even though such
communities have no intuitive meaning). (b) Network structure for a large social or information network, as
suggested by our empirical evaluations. See the text for more information on the “core” and “whiskers,” and note
that the core in our real-world networks is actually extremely sparse.

• Even up to the largest size scales, we observe significantly more structure than would be seen, for
example, in an expander-like random graph on the same degree sequence.

A schematic picture of a typical network community profile plot is illustrated in Figure 2(a). In red
(labeled as “original network”), we plot community size vs. community quality score for the sets of
nodes extracted from the original network. In black (rewired network), we plot the scores of communities
extracted from a random network conditioned on the same degree distribution as the original network.
This illustrates not only tight communities at very small scales, but also that at larger and larger size
scales (the precise cutoff point for which is difficult to specify precisely) the best possible communities
gradually “blend in” more and more with the rest of the network and thus gradually become less and less
community-like. Eventually, even the existence of large well-defined communities is quite questionable
if one models the world with an interaction graph, as in point (1) above, and if one also defines good
communities as densely linked clusters that are weakly-connected to the outside, as in hypothesis (2)
above. Finally, in blue (bag of whiskers), we also plot the scores of communities that are composed of
disconnected pieces (found according to a procedure we describe in Section 4). This blue curve shows,
perhaps somewhat surprisingly, that one can often obtain better community quality scores by combining
unrelated disconnected pieces.

To understand the properties of generative models sufficient to reproduce the phenomena we have
observed, we have examined in detail the structure of our social and information networks. Although
nearly every network is an exception to any simple rule, we have observed that an “octopus” or “jellyfish”
model [42, 152, 148] provides a rough first approximation to structure of many of the networks we have
examined. That is, most networks may be viewed as having a “core,” with no obvious underlying geometry
and which contains a constant fraction of the nodes, and then there is a periphery consisting of a large
number of relatively small “whiskers” that are only tenuously connected to the core. Figure 2(b) presents
a caricature of this network structure. Of course, our network datasets are far from random in numerous
ways—e.g., they have higher edge density in the core; the small barely-connected whisker-like pieces are
generally larger, denser, and more common than in corresponding random graphs; they have higher local

Small, peripheral 
clusters

https://arxiv.org/abs/0810.1355


Overlapping communities
to explain the core periphery model

33

Wiskers
q are typically of size 100
q are responsible of good communities
Core
q denser and denser region
q contains 60% nodes and 80% edges
q a region where communities overlap

(as tiles)

6 Leskovec, Lang, Dasgupta, and Mahoney

(a) Typical NCP plot (b) Caricature of network structure

Figure 2: (a) Typical network community profile plot for a large social or information network: networks have
better and better communities up to a size scale of ≈ 100 nodes, and after that size scale communities “blend-in”
with the rest of the network (red curve). However, real networks still have more structure than their randomized
(conditioned on the same degree distribution) counterparts (black curve). Even more surprisingly, if one allows
for disconnected communities (blue curve), the community quality scores often get even better (even though such
communities have no intuitive meaning). (b) Network structure for a large social or information network, as
suggested by our empirical evaluations. See the text for more information on the “core” and “whiskers,” and note
that the core in our real-world networks is actually extremely sparse.

• Even up to the largest size scales, we observe significantly more structure than would be seen, for
example, in an expander-like random graph on the same degree sequence.

A schematic picture of a typical network community profile plot is illustrated in Figure 2(a). In red
(labeled as “original network”), we plot community size vs. community quality score for the sets of
nodes extracted from the original network. In black (rewired network), we plot the scores of communities
extracted from a random network conditioned on the same degree distribution as the original network.
This illustrates not only tight communities at very small scales, but also that at larger and larger size
scales (the precise cutoff point for which is difficult to specify precisely) the best possible communities
gradually “blend in” more and more with the rest of the network and thus gradually become less and less
community-like. Eventually, even the existence of large well-defined communities is quite questionable
if one models the world with an interaction graph, as in point (1) above, and if one also defines good
communities as densely linked clusters that are weakly-connected to the outside, as in hypothesis (2)
above. Finally, in blue (bag of whiskers), we also plot the scores of communities that are composed of
disconnected pieces (found according to a procedure we describe in Section 4). This blue curve shows,
perhaps somewhat surprisingly, that one can often obtain better community quality scores by combining
unrelated disconnected pieces.

To understand the properties of generative models sufficient to reproduce the phenomena we have
observed, we have examined in detail the structure of our social and information networks. Although
nearly every network is an exception to any simple rule, we have observed that an “octopus” or “jellyfish”
model [42, 152, 148] provides a rough first approximation to structure of many of the networks we have
examined. That is, most networks may be viewed as having a “core,” with no obvious underlying geometry
and which contains a constant fraction of the nodes, and then there is a periphery consisting of a large
number of relatively small “whiskers” that are only tenuously connected to the core. Figure 2(b) presents
a caricature of this network structure. Of course, our network datasets are far from random in numerous
ways—e.g., they have higher edge density in the core; the small barely-connected whisker-like pieces are
generally larger, denser, and more common than in corresponding random graphs; they have higher local



Measuring overlapping
in social networks

34

¡ Basic	question:	nodes	u, v share	k communities
¡ What’s	the	edge	probability?

40

LiveJournal
social network

Amazon
product network

Ground truth - Edge probability increases with 
the number of shared communities

Feld, The focused organization of social ties, [1981]
The more different communities that two individuals 

share, the more likely is that they will be tied

Edge density is 
bigger in the 

overlap



Algorithms
for community detection

35



Modularity
Newman, Modularity and community structure in networks (2006)

https://www.pnas.org/content/pnas/103/23/8577.full.pdf

36

Want to:
q measure of how well a network is partitioned into 

communities (i.e., sets of tightly connected nodes)
Idea:
q “If the number of edges between two groups is only 

what one would expect on the basis of random chance, 
then few thoughtful observers would claim this 
constitutes evidence of meaningful community 
structure” 

q Modularity is “the number of edges falling within groups 
minus the expected number in an equivalent network 
with edges placed at random” 

q The higher modularity, the better the community 
assignment

https://www.pnas.org/content/pnas/103/23/8577.full.pdf


The Louvain algorithm
Blondel, Guillaume, Lambiotte, Lefebvre, Fast unfolding

of communities in large networks (2008)
https://arxiv.org/abs/0803.0476
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The passes are 
repeated iteratively until
no increase of 
modularity is possible

Each node is
a community 
@ start

Phase 1: modularity is optimized
on the normalized ajacency matrix
A by allowing only local changes of 
communities

Phase 2: the communities found are 
aggregated (sum of links) in order to 
build a new network of communities
with normalized adjacency matrix PCC

https://arxiv.org/abs/0803.0476


Characteristics of Louvain
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qImplements modularity optimization
qScalable (low complexity)
qEffective
qAvailable as the reference implementation 

in any programming language
qA greedy technique (in the order the nodes 

are searched)



An example
community detection applied to semantic networks = topic detection

39#metoo tweets



BERTopic
an algorithm based on ChatGPT architecture

40



HDBSCAN in BERTopic
clustering documents into different topics

41

1. each document 
is mapped into an 

embedding
(vector) by BERT

2. cosine metric is 
used to identify 
distances among 

documents

3. HDBSCAN is run 
to identify topics

topic 1
topic 1

outliers 
in gray



A visual example
document network using BERTopic on postpartum tweets

42



HDBSCAN in BERTopic
hierarchical clustering of topics

43

HDBSCAN hierarchy of topics, with those selected



Using community detection
an overview of what it can be useful for
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#climateaction
on Twitter in 2017, 2018, 2019

45

US exits Paris agreement

first tweet of 
Greta 

Thundberg

first school 
strike for 
climate

2019 global 
week for future

Twitter data gathered here



Socio-psychological linguistic markers
a view on the entire tweets corpus
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ingroup community 
orientation within
the text

salience of 
group

membership, 
sense of 

belonging

a person’s
striving to be 
independent to 
assert, protect
and expand
one’s self orientation of tweets to the 

past or future 

only a few 
statistically 
relevant 
changes



Communities/topics in #climateaction
on Twitter in 2017, 2018, 2019
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2018

2019



Topics interdependencies
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Climate action

Nature

Reycling
Work life

Devt goals
Green economy

Intl politics

Digitalization

Pollution & h

Lifestyle

Food

Australia

Women

Green tech

Architecture
projecting the 

adjacency matrix on 
topics

P11

P22

P33

P12 P13

P21 P23

P31 P32



Socio-psychological linguistic markers
a view inside topics
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climate action

0

1

2

3

(a) Affiliation

pollution & h lifestyle food Australia women green tech architecture

nature recycling work life devt goals green economy intl politics digitalization
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climate action

0.0
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(b) We
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climate action

0

1

2

(c) Empowerment
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climate action

0.0
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(d) Future focus

pollution & h lifestyle food Australia women green tech architecture

nature recycling work life devt goals green economy intl politics digitalization
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climate action
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climate action
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pollution & h lifestyle food Australia women green tech architecture

nature recycling work life devt goals green economy intl politics digitalization

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

 

climate action

0

1

2

(c) Empowerment
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Projecting markers
on specific words, and their application
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The question
how to project sentiment information from tweets to hashtags?
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1
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Tweets

Hashtags

#climatechange

#GretaThunberg
4

5

6

7

8

#Environment

#longevity

Sentiment analysis

Positive 8.75

Neutral 0.75

Negative -5.75



PLMP projection
a PageRank like approach
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Tweets
Hashtags
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• Each hashtag captures
the average sentiment
value of the tweets it
appears in

• Each tweet captures the 
average sentiment of the 
hashtags it contains

we iterate the two steps
until convergence



An example
community detection applied to semantic networks = topic detection
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PLMP agency values
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Projection of agency and anger
on the target word we – #covid19
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projection on the target word «we» characterises the social development
of the online discourse over time and across specific topics, and capture
trends that cannot be spotted without the projection



Takeaways
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q Centrality by PageRank
q Closeness by Local PageRank
q Community detection in semantic networks is 

topic detection
q Usefulness of communities
q Projecting marker values for deeper insights


