

UNIVERSITÀ DEGLI STUDI DI PADOVA

Social Network Analysis

A.Y. 23/24

Communication Strategies

PageRank

a centrality measure based on the web

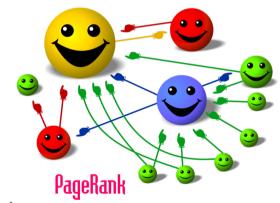
What is PageRank?

PageRank

From Wikipedia, the free encyclopedia

PageRank (PR) is an algorithm used by Google Search to rank web pages in their search engine results. PageRank was named after Larry Page,^[1] one of the founders of Google. PageRank is a way of measuring the importance of website pages. According to Google:

PageRank works by counting the number and quality of links to a page to determine a rough estimate of how important the website is. The underlying assumption is that more important websites are likely to receive more links from other websites.^[2]

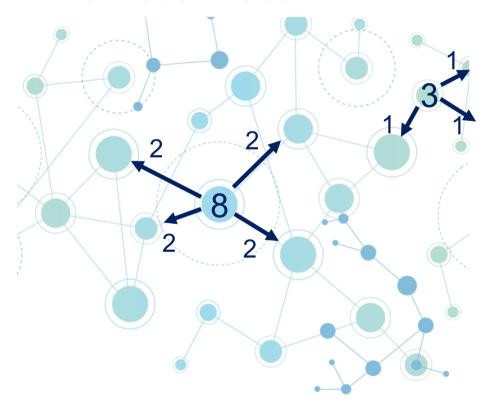


Currently, PageRank is not the only algorithm used by Google to order search results, but it is the first algorithm that was used by the company, and it is the best known.^{[3][4]} As of September 24, 2019, PageRank and all associated patents are expired.^[5]

How to organise the web?

- the higher the number of incoming links, the more important a node
- The more important a node, the more valuable the output links

Step 1: spread (evenly) information (on centrality) from each node

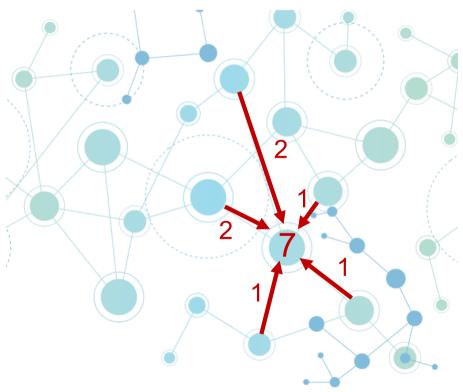


in the web this corresponds to the idea that starting from a web page you choose with equal probability one of the sites linked by the page

PageRank idea network flow

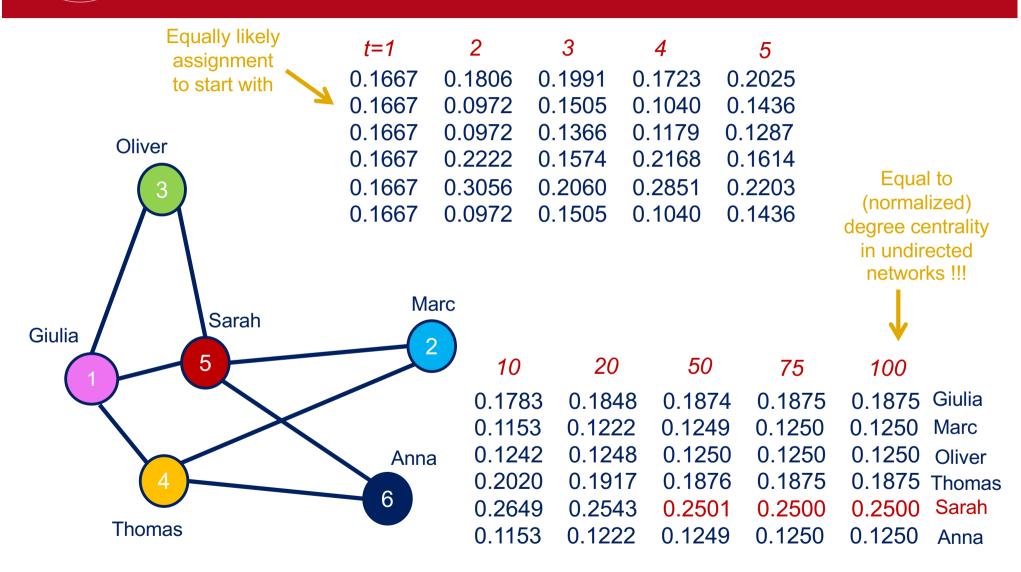
Step 2: collect spreaded information at each node (until convergence)

in the web this roughly corresponds to the chance (probability) of ending in a specific web page



Example

random flow on a friends' network



Teleportation

as a method to strenghten the result

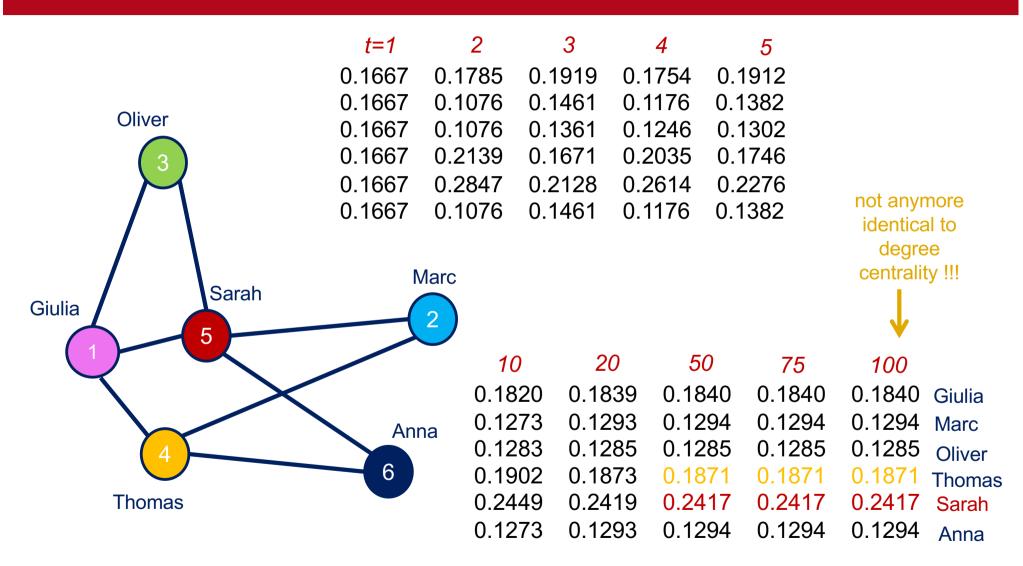
Idea:

the surfer does not necessarily move to one of the links of the page she/he is viewing:

- ☐ it does with probability, say c = 85%
- with probability 1 c = 15% it might jump to a random page (according to a predetermined policy)

Example

teleportation on a friends' network – random policy



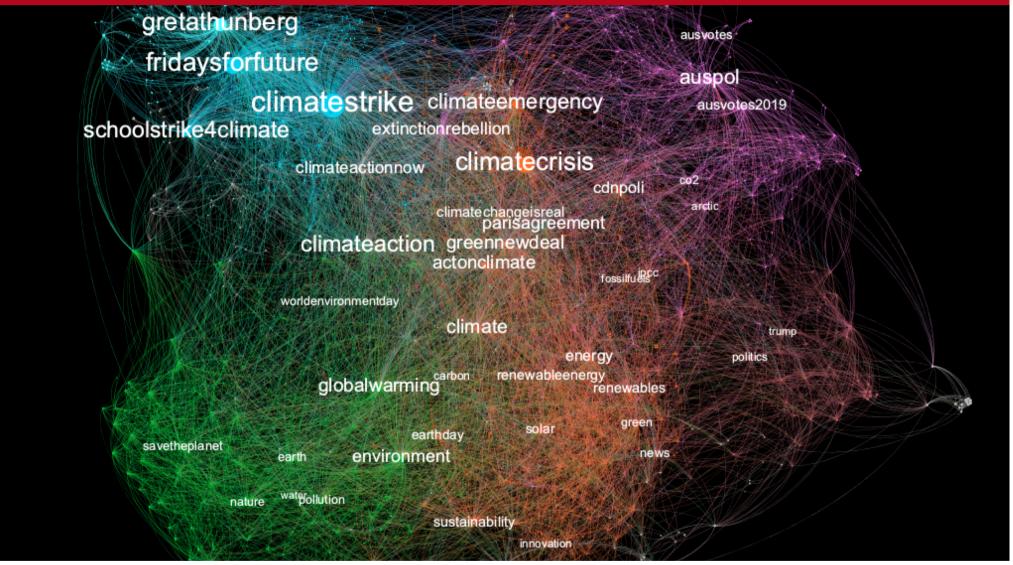
- PageRank can capture the subtleties of networks
- Similar, but more reliable than degree
- ☐ Simple to implement (scalable)
- Want to see this in your projects

Visualizing PageRank

a comparison with degree centrality

PageRank on a semantic network

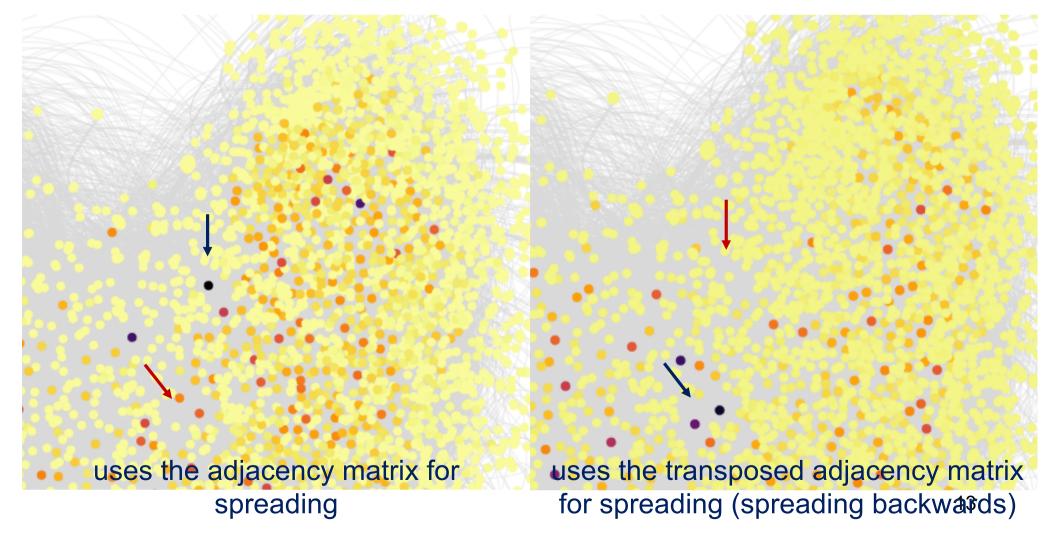
2019 hashtag network related to #climatechange (from Twitter, after #gretathunberg)



Example of PageRank centrality

wikipedia administrator elections and vote history data https://snap.stanford.edu/data/wiki-Vote.html

Authorities Hubs



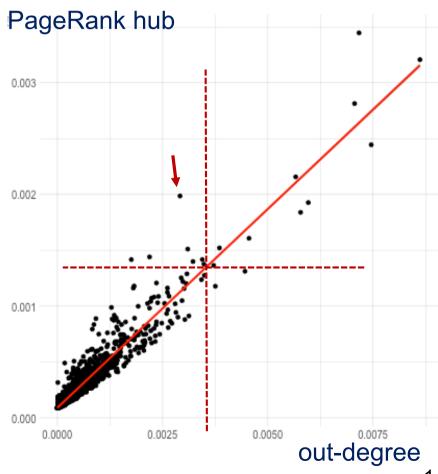
PageRank versus degree centrality

wikipedia administrator elections and vote history data

Authorities

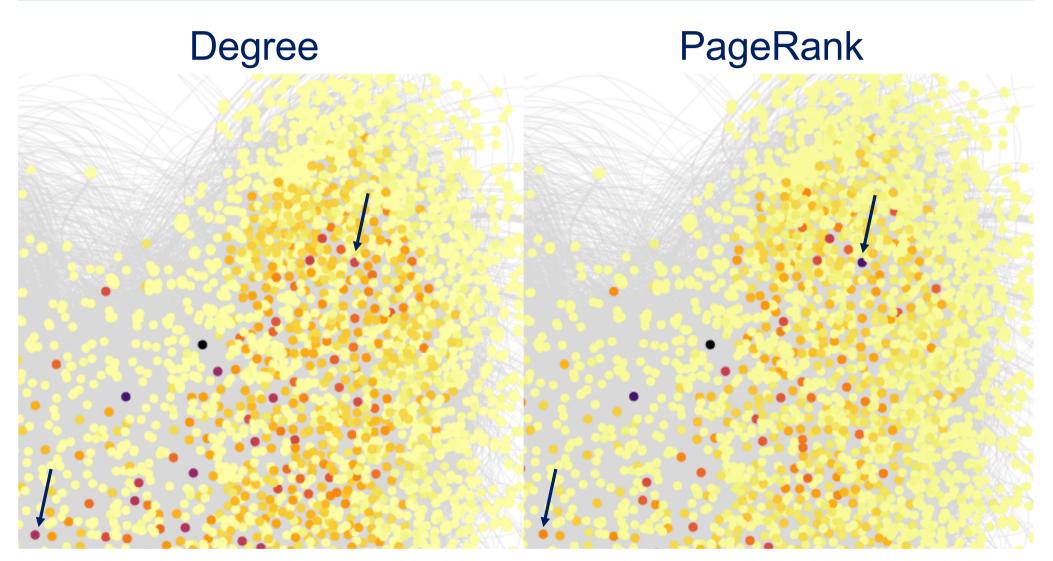
PageRank authority 0.004 0.003 0.002 0.001 0.003 0.004 0.000 0.001 0.002 in-degree

Hubs



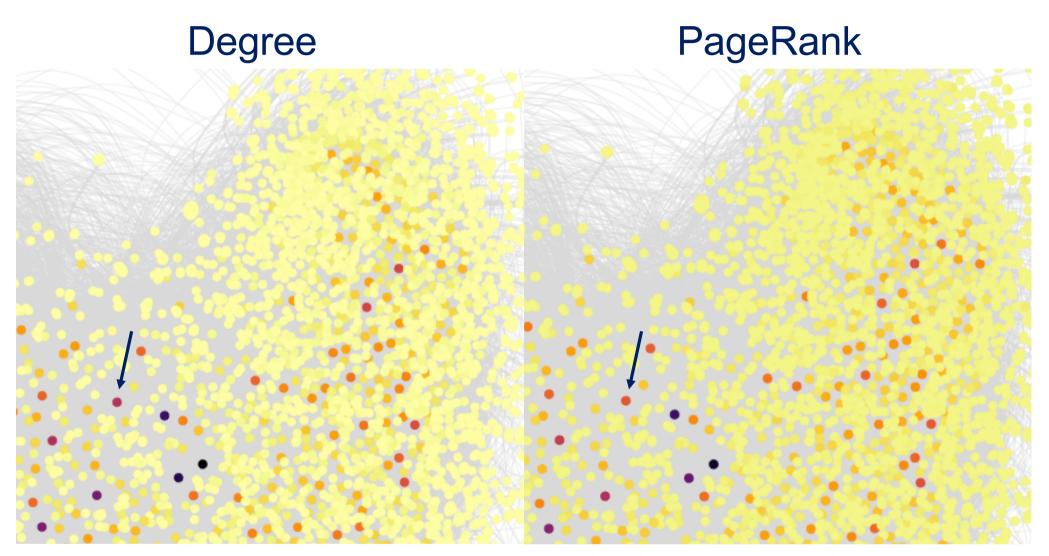
PageRank versus degree authorities

wikipedia administrator elections and vote history data



PageRank versus degree hubs

wikipedia administrator elections and vote history data



Local PageRank

measuring closeness to a node, i.e., friendship

Measuring closeness: LocalPageRank

measure similarity to a node

Idea

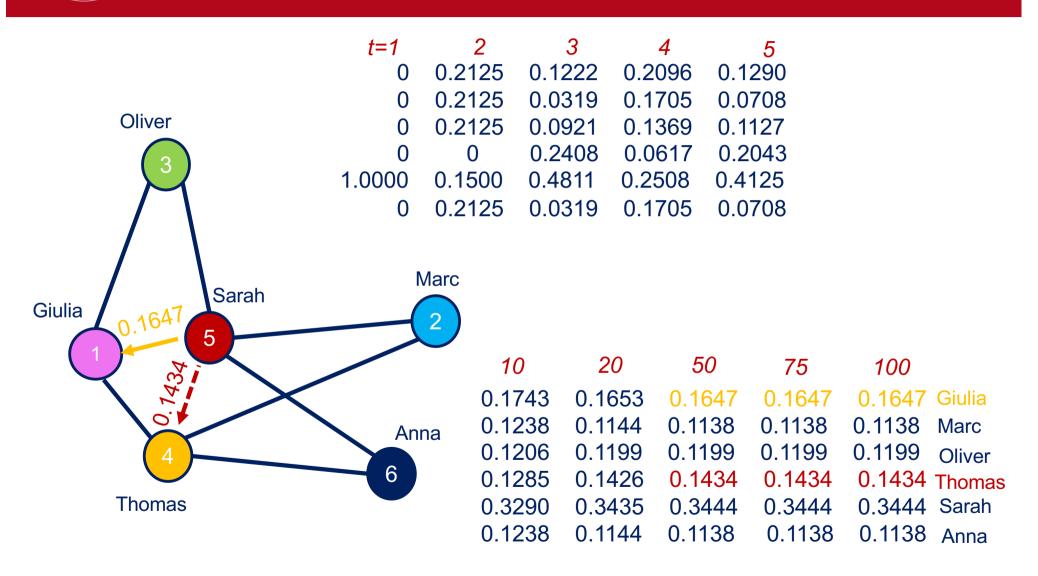
■ Measure similarity or closeness to node i by applying PageRank with teleport set to node i only

Result

 Measures direct and indirect multiple connections, their quality, degree or weight

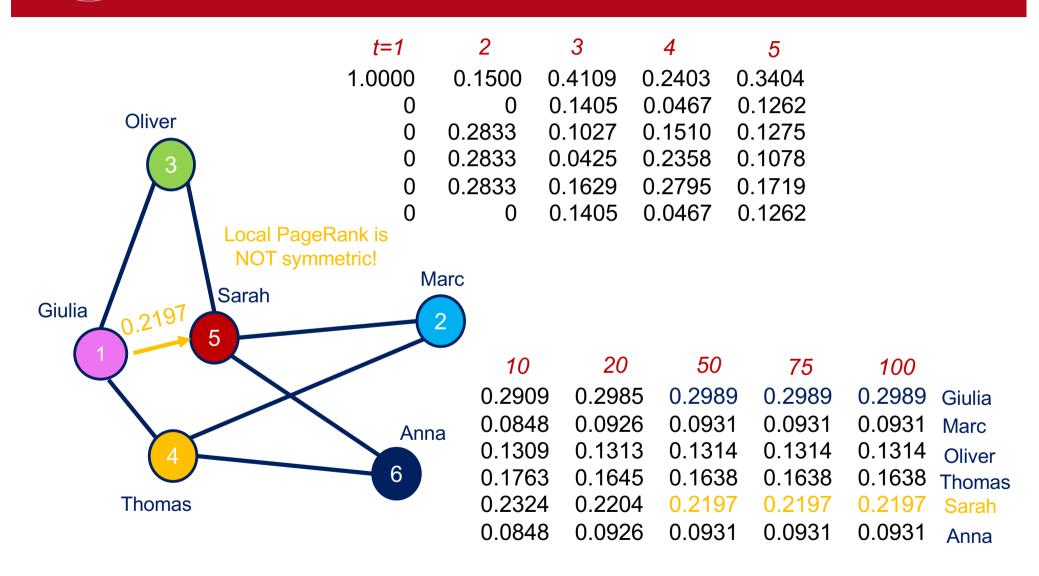
Example

who's Sara's best friend? Policy = jump back to Sara



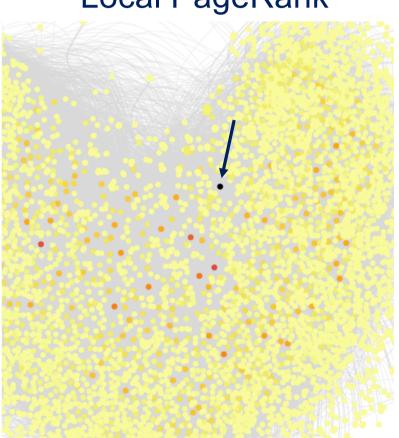
Example

who's Giulia's best friend? Policy = jump back to Giulia



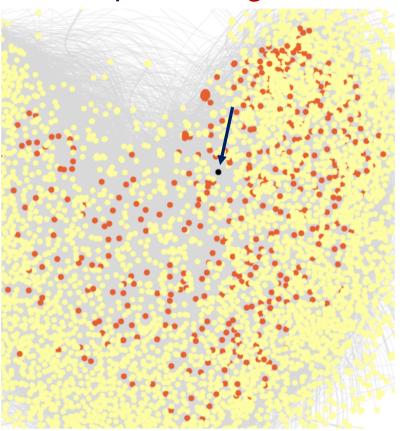
Local PageRank versus degree authorities

Local PageRank



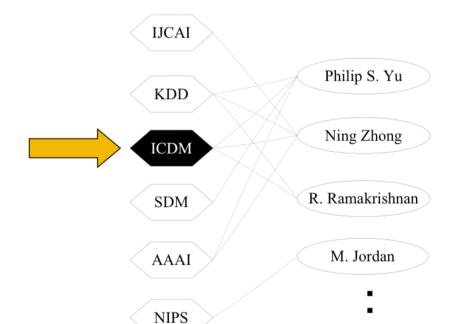
neighbours authority score = local node → neighbours

1-hop out-neighbours



Example

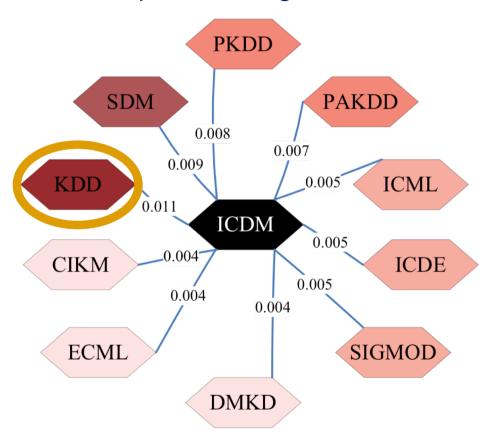
what is the most related copnference to ICDM?



Author

Conference

Top 10 ranking results



ICDM = international conf. on data mining KDD = knowledge discovery and data mining

Measuring closeness to a topic

topic specific PageRank

Want to know about a specific topic? TopicSpecific PageRank

Poilicy = jump back, at random, to one of the nodes of the topic

TopicSpecific PageRank example

in semantic networks

Tweet 1 is assigned to Topic 1 !!!

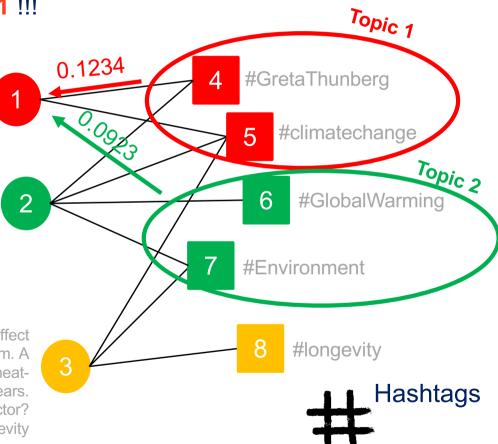
those who think they are crazy enough to change the world eventually do. #climatechange #ClimateCrisis #ClimateAction #GretaThunberg #Greta

Hopefully these kids will succeed where past generations have failed. #TheResistance #FBR #ClimateChange #Environment #GlobalWarming #GretaThunberg

Tweets

The #environment can have a major effect on the human cardiovascular system. A new study has found an increase in heat-induced #heartattack risk in recent years. Could #ClimateChange be a risk factor?

#longevity



Community detection

and related concepts

Conceptual picture of a network

explaining the role of community detection

Cluster/Community

(strong tie) Bridge (weak tie)

- We often think of networks looking like this
- But, where does this idea come from?

Granovetter's explanation

Granovetter, The strength of weak ties [1973] https://www.jstor.org/stable/pdf/2776392.pdf

Q: How do people discovered their new jobs?

A: Through personal contacts, and mainly through acquaintances rather than through close friends

Local cluster/community
Strong ties

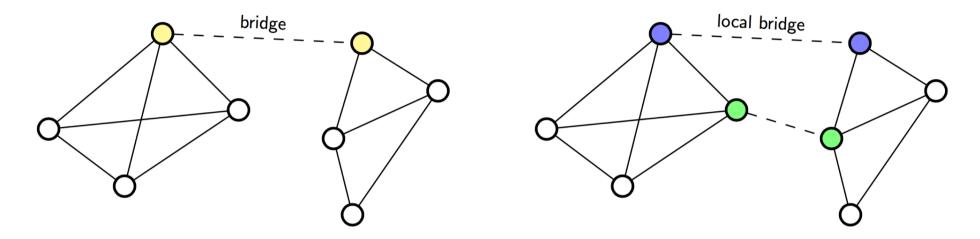
Remark: Good jobs are a scarce resource

Conclusion:

- Structurally embedded edges are also socially strong, but are heavily redundant in terms of information access
- Long-range edges spanning different parts of the network are socially weak, but allow you to gather information from different parts of the network (and get a job)

Bridges
Weak ties

Local bridges



An edge is a bridge if deleting it the nodes it connects fall into different components

this is extremely rare, e.g., because of small world properties

☐ An edge is a local bridge if, by deleting it, the nodes it connects have a span (distance) greater than 2, i.e., if they do not have friends in common

common friends imply belonging to a triadic closure

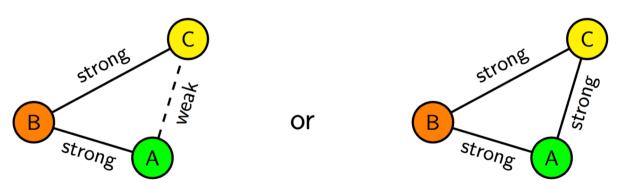
Strong triadic closure

friends/relatives and acquaintances

Assume two categories of edges:

- ☐ Strong ties (close friends)
- Weak ties (acquaintances)

Remark. If node B is strongly tied with A and C, then A and C are very likely to be connected (either weakly or strongly), that is



Strong triadic closure property – If a generic node B is strongly tied with A and C, then A and C are connected (either weakly or strongly)

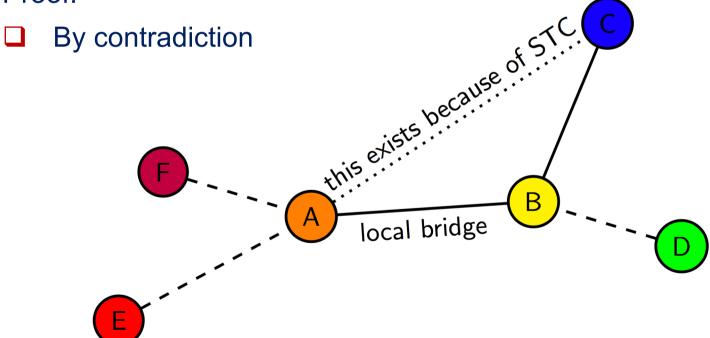
Granovetter's claim

under strong triadic closure

Claim:

Under the strong triadic closure property, local bridges are weak ties (if at least one of their nodes belongs to at least two strong ties)

Proof:



Community detection

the general approach

- We want to be able to automatically find such densely connected group of nodes
- We look for unsupervised methods, as most of the times no ground truth is available
- We look for a measure of the goodness of a community assignment, to be able to compare the performance of different algorithms
- Applications in:

social networks

functional brain networks in neuroscience

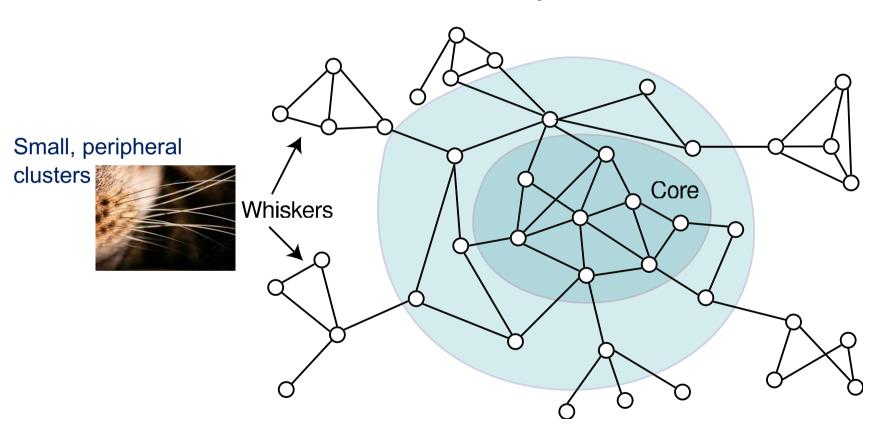
scientific interactions

The core periphery model

Lescovec, Lang, Dasgupta, Mahoney, Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters (2008)

https://arxiv.org/abs/0810.1355

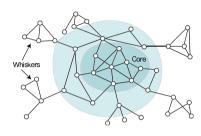
Can we find a justification for this?



Caricature of network structure

Overlapping communities

to explain the core periphery model



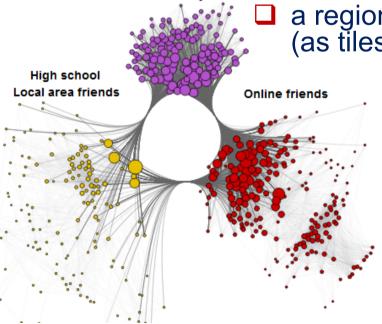
Wiskers

- ☐ are typically of size 100
- are responsible of good communities

Core

- denser and denser region
- contains 60% nodes and 80% edges
- a region where communities overlap

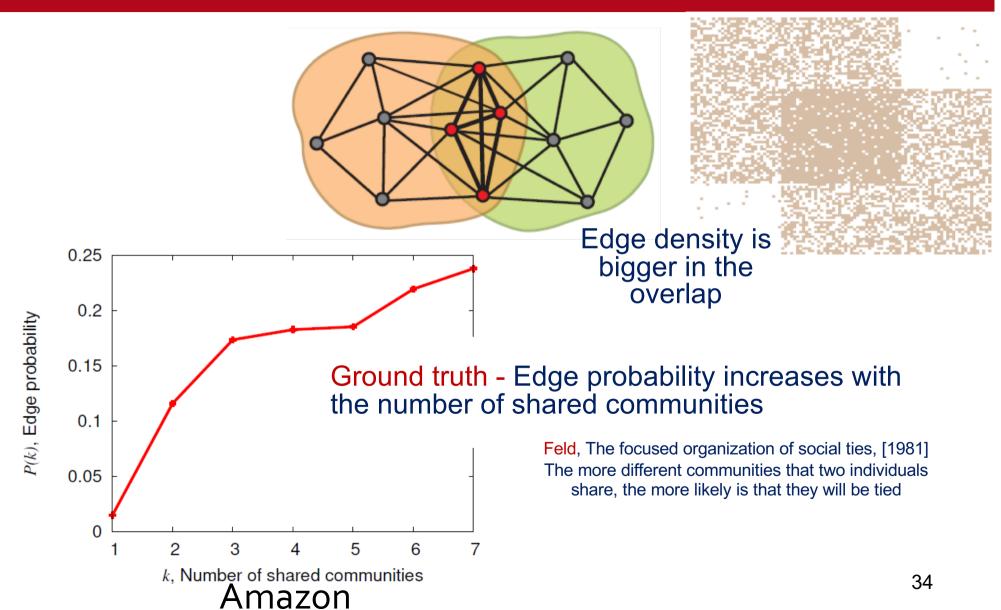
(as tiles)



Family

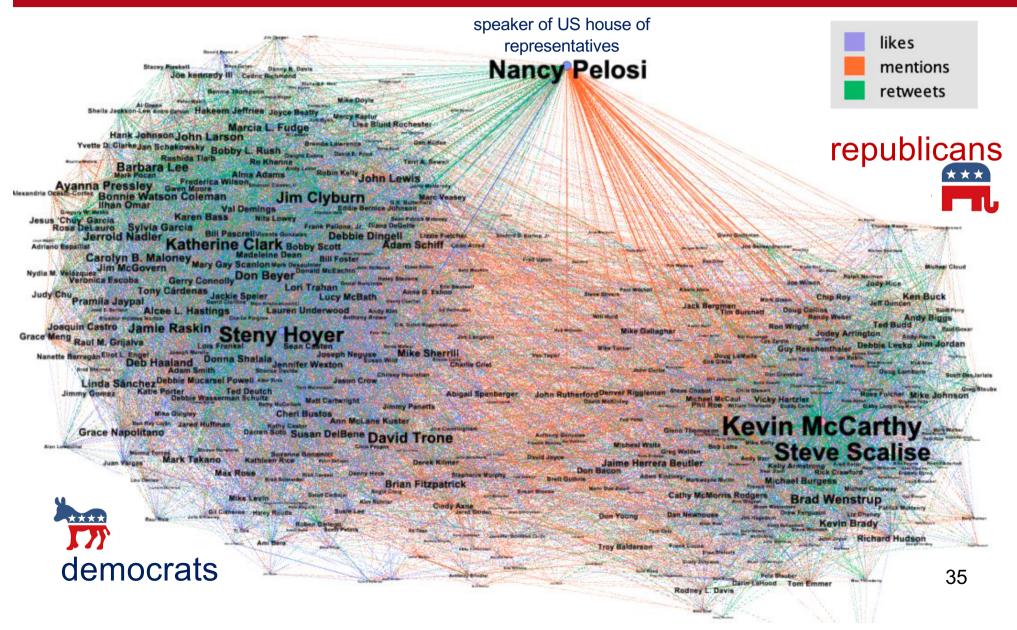
Measuring overlapping

in social networks



Clustering political beliefs

US republican and democrats interactions on Twitter 2020



Algorithms for community detection

Modularity

Newman, Modularity and community structure in networks (2006) https://www.pnas.org/content/pnas/103/23/8577.full.pdf

Want to:

measure of how well a network is partitioned into communities (i.e., sets of tightly connected nodes)

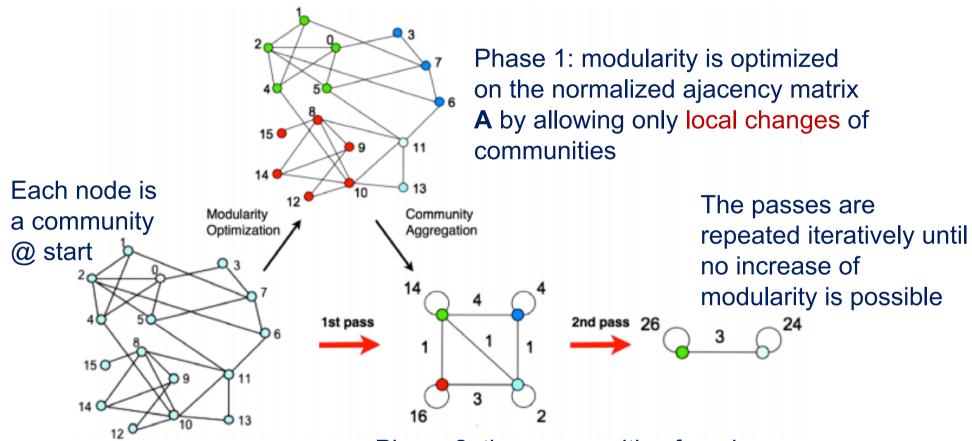
Idea:

- "If the number of edges between two groups is only what one would expect on the basis of random chance, then few thoughtful observers would claim this constitutes evidence of meaningful community structure"
- Modularity is "the number of edges falling within groups minus the expected number in an equivalent network with edges placed at random"
- The higher modularity, the better the community assignment

The Louvain algorithm

Blondel, Guillaume, Lambiotte, Lefebvre, Fast unfolding of communities in large networks (2008)

https://arxiv.org/abs/0803.0476



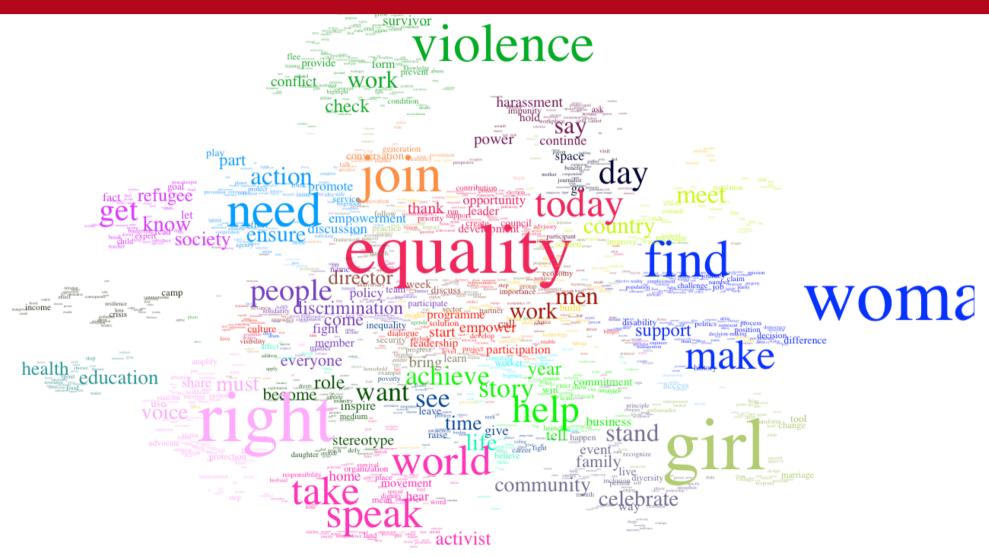
Phase 2: the communities found are aggregated (sum of links) in order to build a new network of communities with normalized adjacency matrix P_{CC}

Characteristics of Louvain

- □ Implements modularity optimization
- □Scalable (low complexity)
- **□**Effective
- □ Available as the reference implementation in any programming language
- ☐A greedy technique (in the order the nodes are searched)

An example

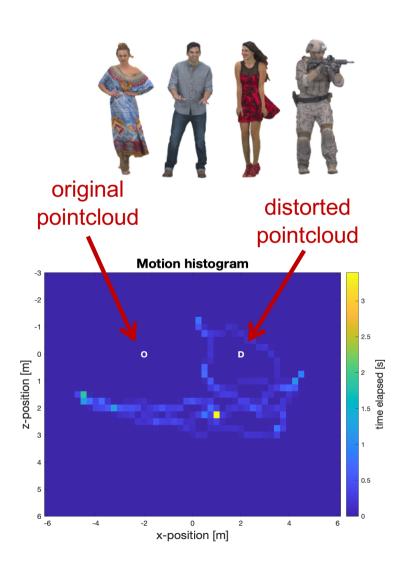
community detection applied to semantic networks = topic detection



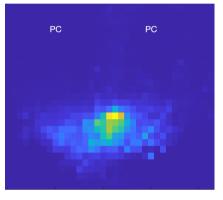
#metoo tweets

Clustering motion patterns

In immersive environments



Cluster 1: walking from a distance

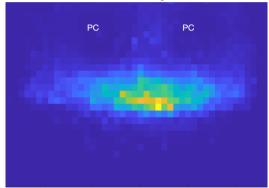


PC

PC

Cluster 3: standing still

Cluster 2: walking closely

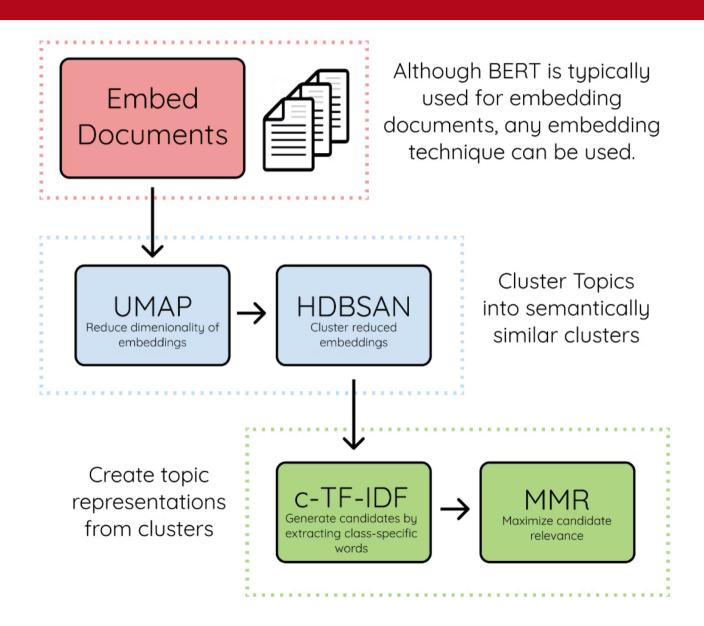


motion behaviours
detected by Louvain on
Pearson correlations
over (filtered) motion
patterns

UNIVERSITÀ DEGLI STUDI DI PADOVA

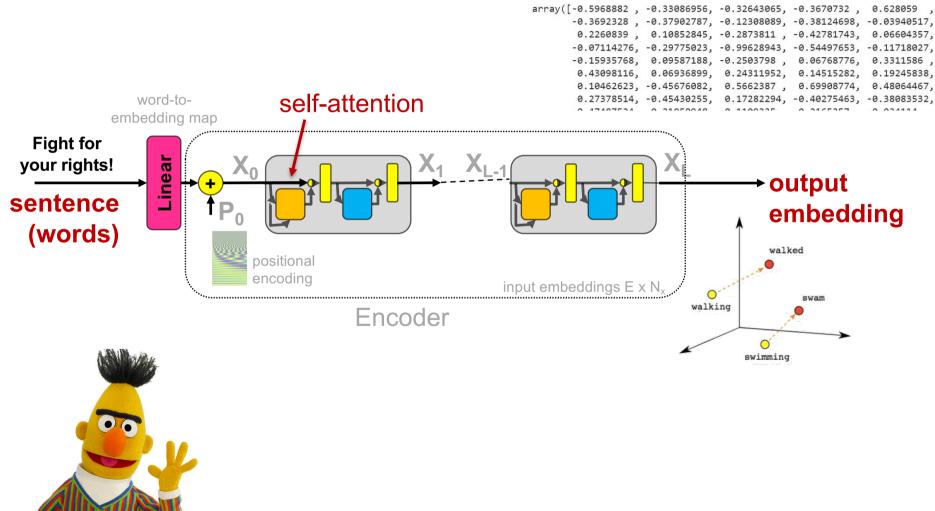
BERTopic

an algorithm based on ChatGPT architecture



BERT

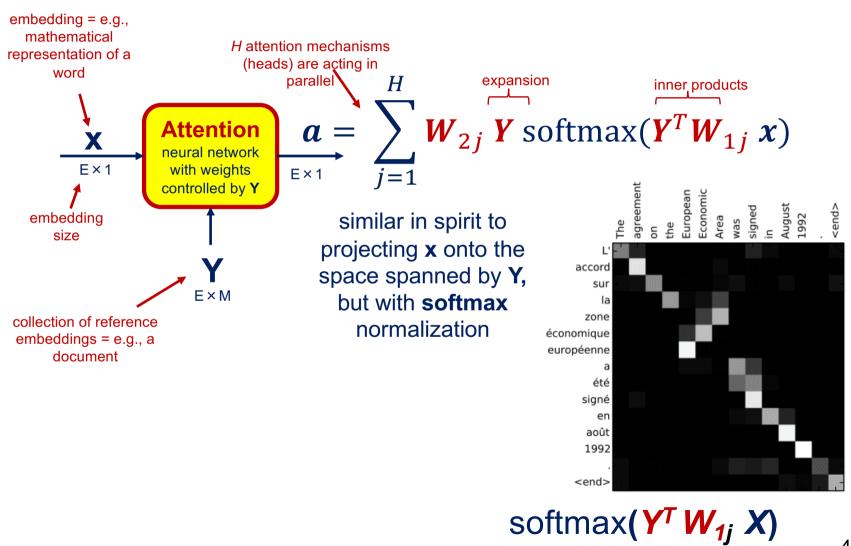
The transformer architecture



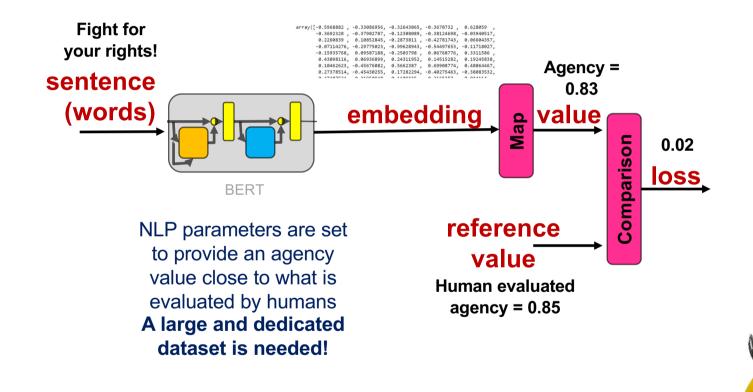
UNIVERSITÀ DEGLI STUDI DI PADOVA

BERT

embedding through attention



BERT Training a NLP tool



HDBSCAN in BERTopic

clustering documents into different topics

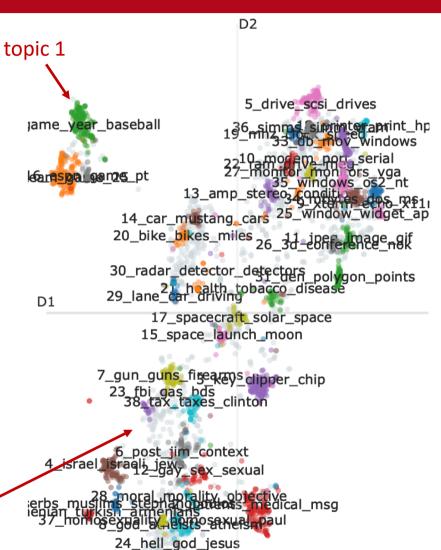
each document
 is mapped into an
 embedding
 (vector) by BERT

2. cosine metric is used to identify distances among documents

3. UMAP maps into a simpler space (e.g. 2 dimensional)

4. HDBSCAN is run to identify topics

outliers in gray



- 0 team game 25
- 1_game_year_baseball
- 2_patients_medical_msg
- 3 key_clipper_chip
- 4 israel israeli jews
- 5 drive scsi drives
- 6_post_jim_context
- 7_gun_guns_firearms
- 8_god_atheists_atheism
- 9_xterm_echo_x11r5
- 10_modem_port_serial
- 11_jpeg_image_gif
- 12_gay_sex_sexual
- 13_amp_stereo_condition
- 14_car_mustang_cars
- 15_space_launch_moon
- 16_espn_game_pt
- 17_spacecraft_solar_space
- 18_printer_print_hp
- 19_mhz_clock_speed
- 20_bike_bikes_miles
- 21_health_tobacco_disease
- 22_ram_drive_meg
- 23_fbi_gas_bds
- 24_hell_god_jesus
- 25_window_widget_application
- 26_3d_conference_nok

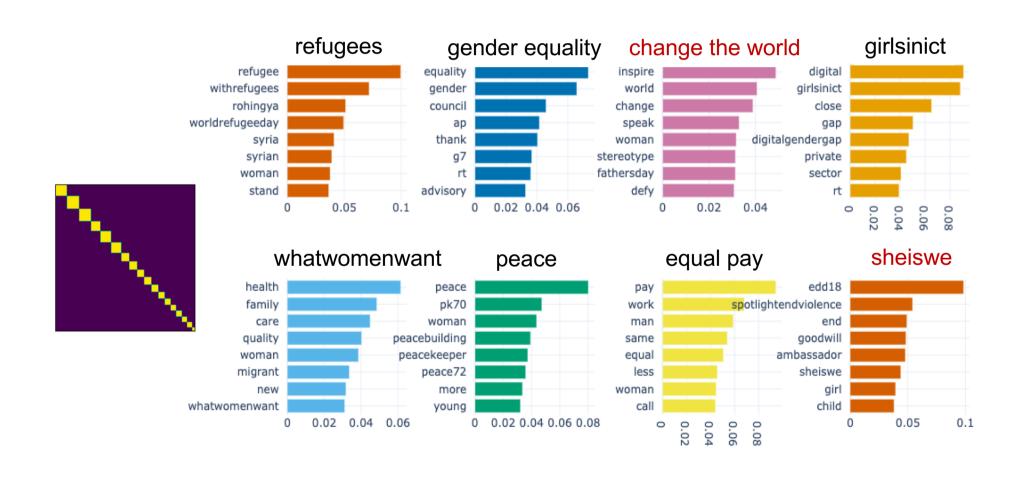
46

topic 1

27_monitor_monitors_vga

Topic description

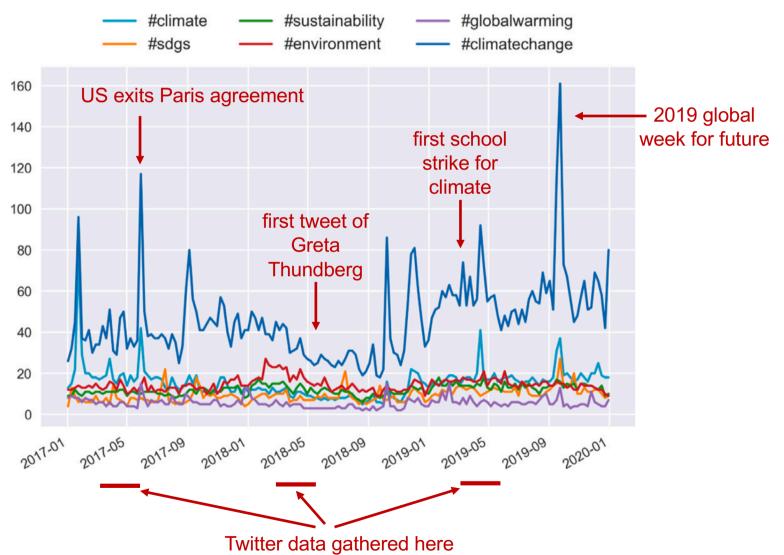
In BERTopic, #metoo2018



Using community detection

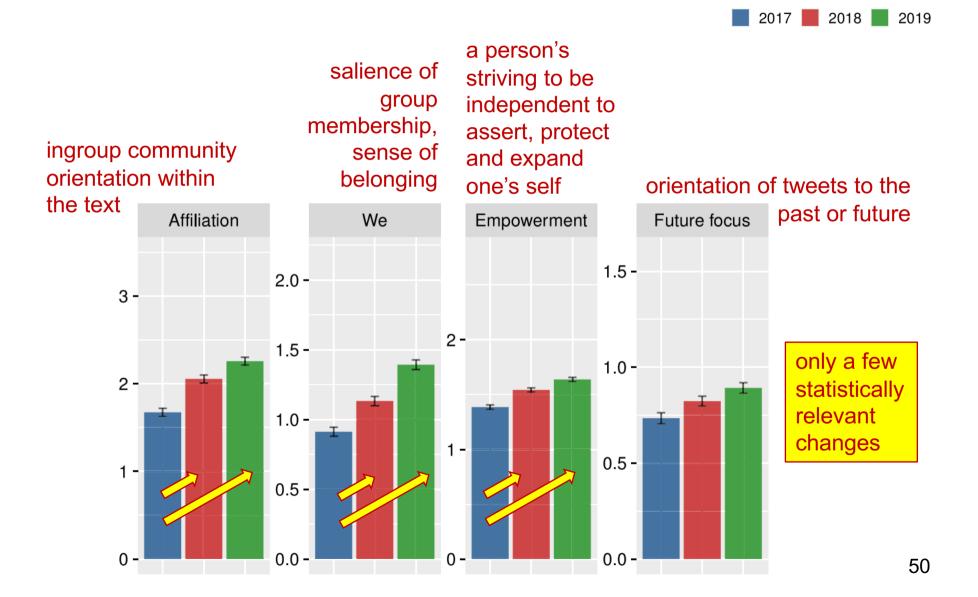
an overview of what it can be useful for

#climateaction on Twitter in 2017, 2018, 2019



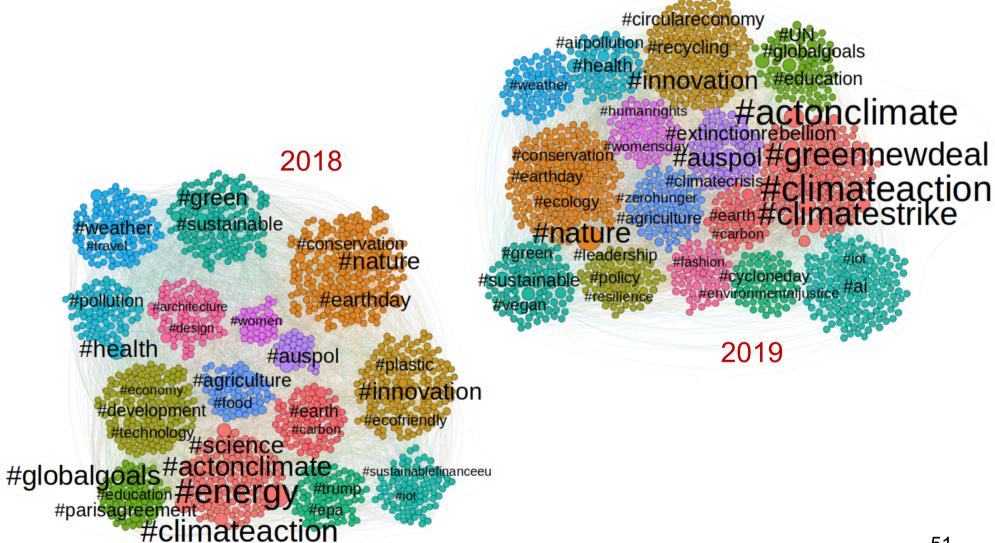
Socio-psychological linguistic markers

a view on the entire tweets corpus

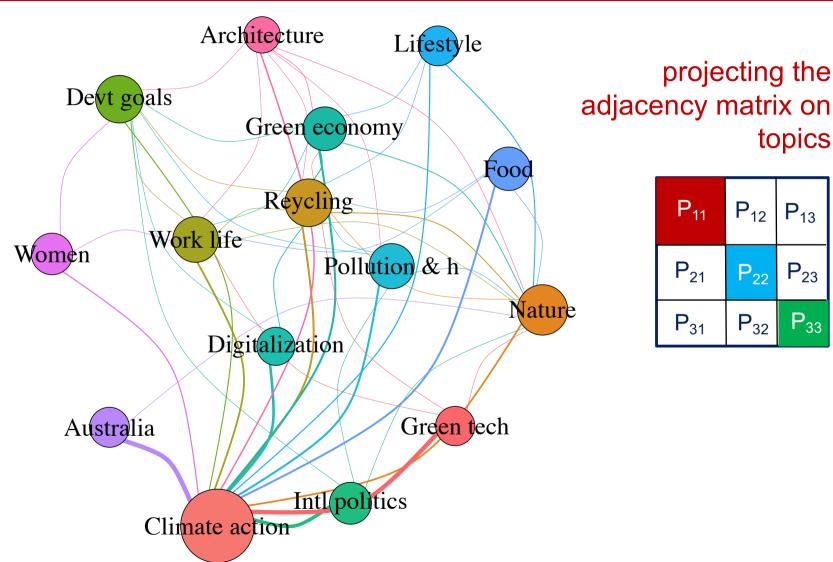


Communities/topics in #climateaction

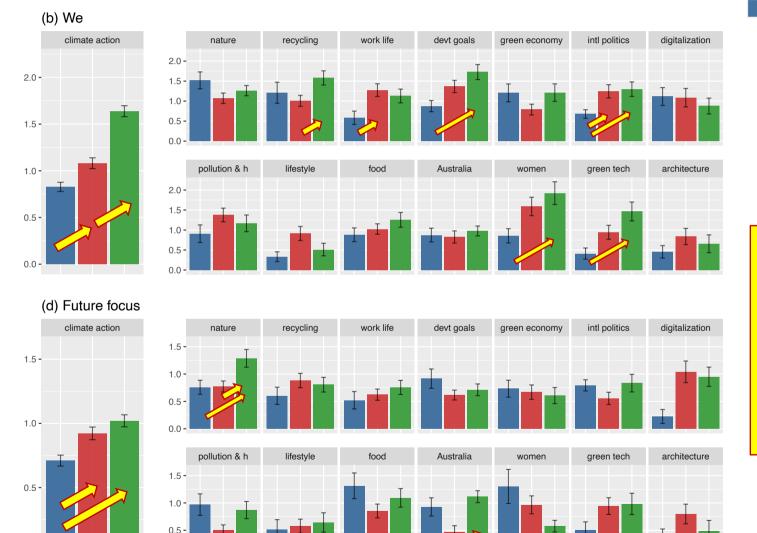
on Twitter in 2017, 2018, 2019



Topics interdependencies



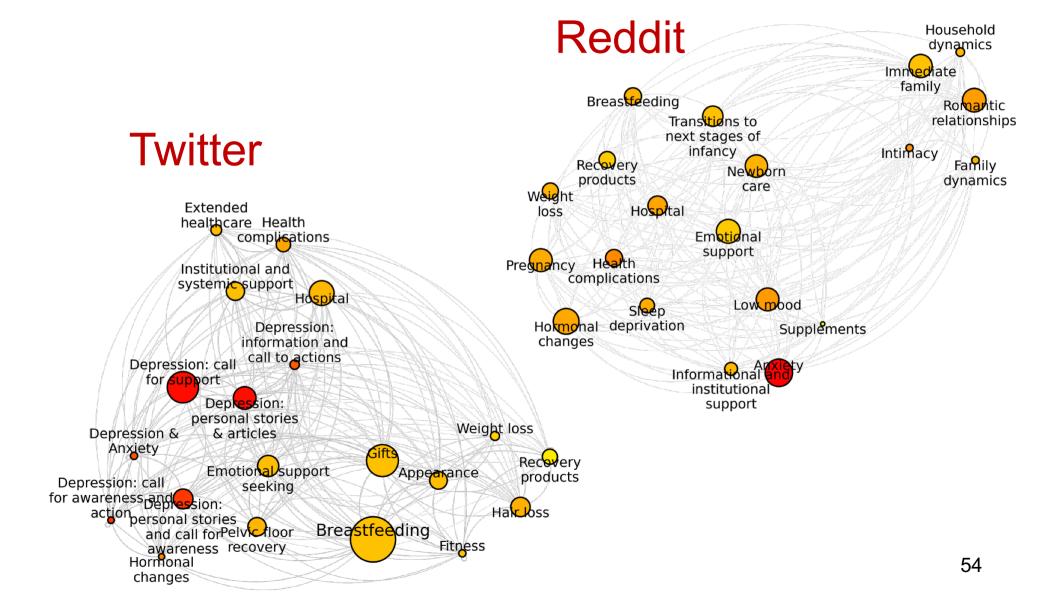
Socio-psychological linguistic markers a view inside topics



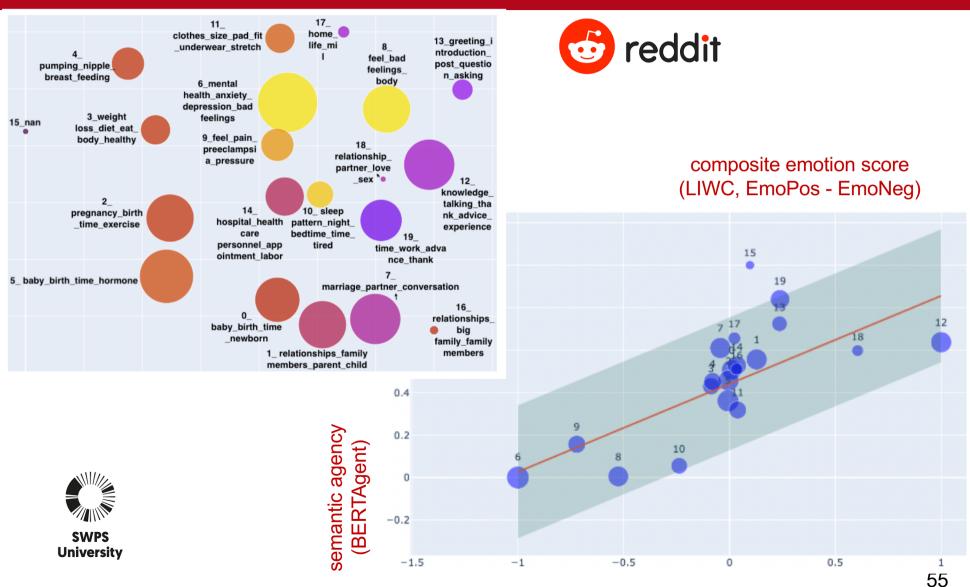
relevant
statistically
changes of
we-future
only in the
climate
action
community

2018

Topics again In postpartum depression



Agency in communities In postpartum depression

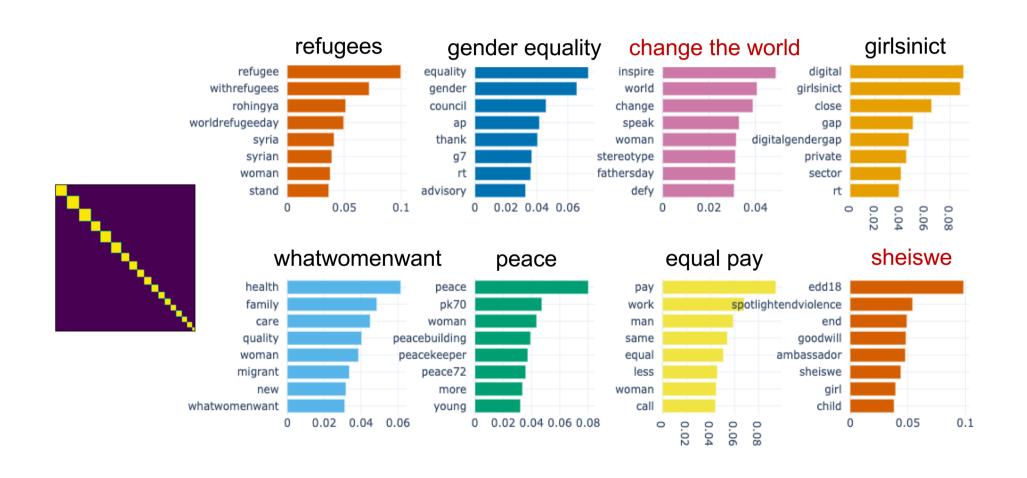


Insights on text

On topic analysis and more

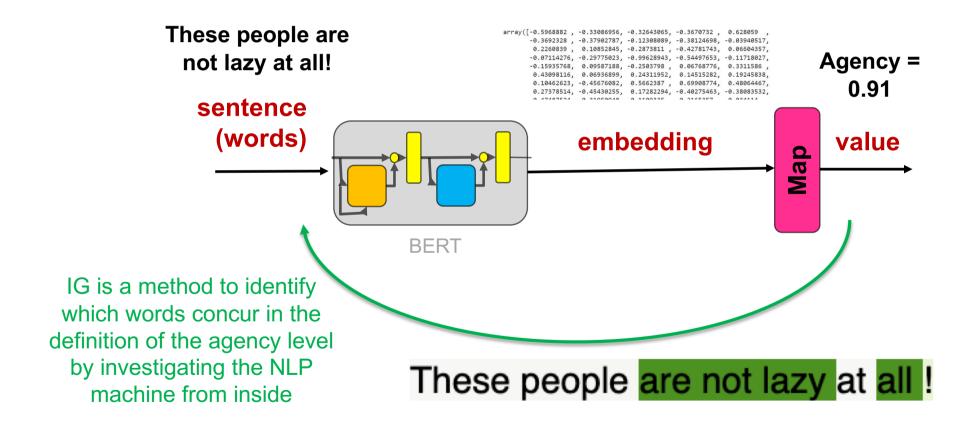
Topic description

In BERTopic, #metoo2018

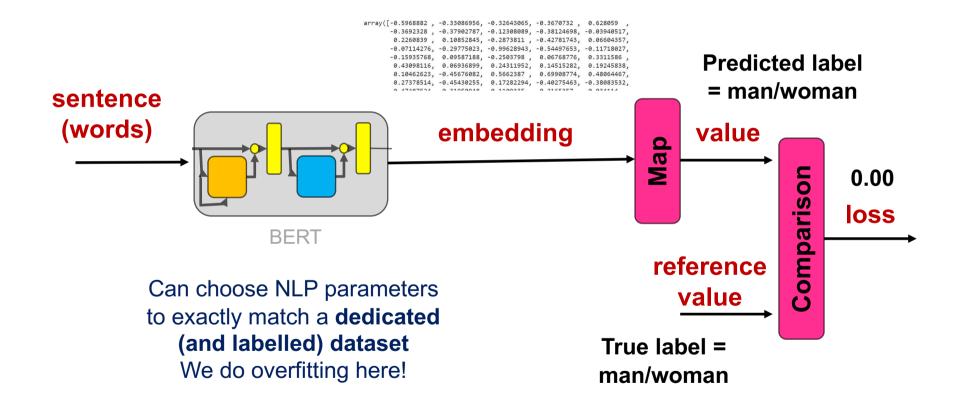


Explainability

Through integrated gradient (IG)



Explainability On a labeled dataset



An example With labels

class	#docs	keywords			
GENDER (of the aggressor)					
both	6	couple, parent, child, be, husband, walk, their, lady, dog,			
	200	woman, there, people, they, and, ask, who, block, aggressive, voicemail, her			
man	290	misogynistic, male, while, brother, husband, kid, father, boy, guy, boyfriend, man, boss, gentleman, lad, couple, dad, target, bartender, notice, Gino			
woman	146	sister, girl, obsess, waitress, next, girlfriend, lady, mother, woman, swear, between, cheat, daughter, she, secretary, young,			
		charge, father, supermarket, staff			
RELATIONSHIP (between the victim and the aggressor)					
acquaintance	102	employer, supervisor, Michele, student, mate, roommate, col-			
friend	31	league, advisor, classmate, grade, neighbor, partner, coordinator, neighbour, like, club, thesis, flatmate, teacher, former friend, friendship, boyfriend, ex, good, 'm, due, university, my, classroom, remain, whom, mutual, dear, myself, trust, talk, relationship, each, mine			
partner/family	77	relative, partner, date, boyfriend, daughter, Marco, girlfriend,			
unknown person	267	engage, sister, ex, husband, brother, pregnant, father, dad, guy, mother, relationship, mum, law clerk, bartender, salesperson, lad, bar, customer, festival, diner, mcdonald, beep, checkout, purchase, mexican, guy, tent, exchange, disco, stroller, company, gentleman			

An example With topics

INSULTS and FEELINGS (during/as a consequence of the aggression)

topic 1	330	scare, share, ashamed, guilt, instinct, hurt,	and feel angry very feel I to be-	very angr
		scared, cry, proud, misunderstood, tear, affect,	cause be he that but it the hurt in	scare reall
		disappoint, afraid, himself, undervalue, relieve,	so my make her	upset know
		apologise, benefit, sad		
topic 3	229	dickhead, sorry, name, bitch, stupid, number,	I bitch and he call whore to that	call bitch
		dick, asshole, idiot, call, whore, insult, fuck,	call the stupid you she be call my	name frier
		slur, chase, ignorant, ass, slag, cunt, frigid	of at for he	then get h
topic 7	125	lose, hate, tired, speechless, hurt, reschedule,	to know and want ignore that I do	know war
		ignore, piss, understand, damage, know, safe,	understand he she just it he tired	situation t
		advantage, want, recognize, escalate, offence,	the now what do do	hate think
		good, worse, just		handle
topic 8	116	carry, calm, anger, mood, speechless, strong,	anger to and but calm the badly	anger rem
		stun, protect, react, stay, smile, defense, silent,	that not feel I he remain of stay	throw any
		remain, shame, badly, treat, bitterness, call, die	he be for with because	insult just
topic 13	73	fault, change, wear, blame, ass, temper, lose,	it and different the wear fault today	wear chai
		routine, different, own, short, coat, correct,	to he nice of be I part my change	nice come
		mask, sweater, mistake, team, hood, easy, night	this attitude that all	ject call p
				work
topic 14	70	tuesday, voice, shake, head, swear, laugh, tone,	voice and tone he I at the swear	voice shal
		kid, hat, foot, damage, wrong, shock, raise, sue,	shake my his in head as raise be	head leave
		pace, week, match, mph, slightly	start to raise of	try wrong
topic 15	66	aloud, clause, unpolite, line, fool, hung, believe,	point certain believe that she not to	point beli
		hang, laugh, point, racist, price, anymore, basi-	at as and I of he in view thing we	pleasant tr
		clly, myself, joke, situation, thing, idiot, certain	boy the my	in lend sit