

UNIVERSITÀ DEGLI STUDI DI PADOVA

Social Network Analysis

A.Y. 23/24

Communication Strategies

Community detection

a.k.a. clustering in graphs

Conceptual picture of a network

explaining the role of community detection

Cluster/Community

(strong tie) Bridge (weak tie)

- We often think of networks looking like this
- But, where does this idea come from?

Granovetter's explanation

Granovetter, The strength of weak ties [1973] https://www.jstor.org/stable/pdf/2776392.pdf

Q: How do people discovered their new jobs?

A: Through personal contacts, and mainly through acquaintances rather than through close friends

Local cluster/community
Strong ties

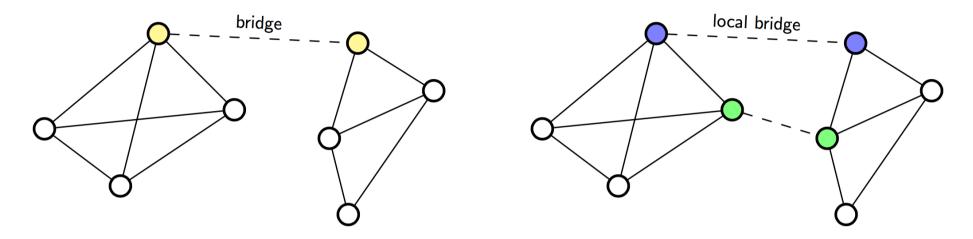
Remark: Good jobs are a scarce resource

Conclusion:

- Structurally embedded edges are also socially strong, but are heavily redundant in terms of information access
- Long-range edges spanning different parts of the network are socially weak, but allow you to gather information from different parts of the network (and get a job)

Bridges Weak ties

Local bridges



□ An edge is a bridge if deleting it the nodes it connects fall into different components

this is extremely rare, e.g., because of small world properties

□ An edge is a local bridge if, by deleting it, the nodes it connects have a span (distance) greater than 2, i.e., if they do not have friends in common

common friends imply belonging to a triadic closure

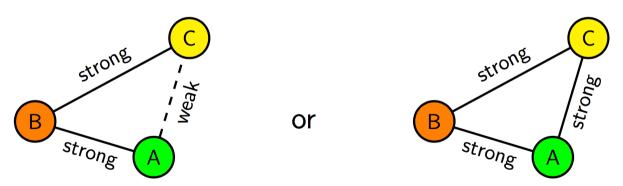
Strong triadic closure

friends/relatives and acquaintances

Assume two categories of edges:

- ☐ Strong ties (close friends)
- Weak ties (acquaintances)

Remark. If node B is strongly tied with A and C, then A and C are very likely to be connected (either weakly or strongly), that is



Strong triadic closure property – If a generic node B is strongly tied with A and C, then A and C are connected (either weakly or strongly)

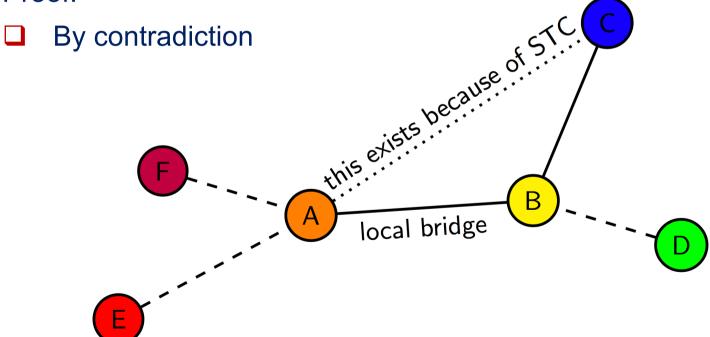
Granovetter's claim

under strong triadic closure

Claim:

Under the strong triadic closure property, local bridges are weak ties (if at least one of their nodes belongs to at least two strong ties)

Proof:



Community detection

the general approach

- ☐ Granovetter's theory suggests that networks are composed of tightly connected sets of nodes (i.e., communities), loosely connected between them
- We want to be able to automatically find such densely connected group of nodes
- We look for unsupervised methods, as most of the times no ground truth is available
- We look for a measure of the goodness of a community assignment, to be able to compare the performance of different algorithms
- Applications in:

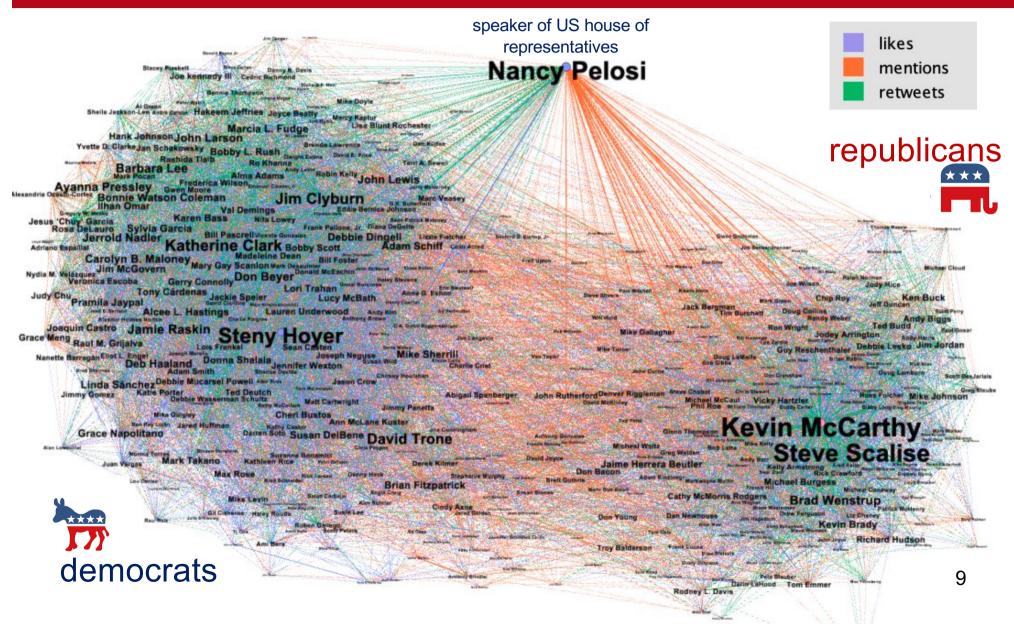
social networks

functional brain networks in neuroscience

scientific interactions

Clustering political beliefs

US republican and democrats interactions on Twitter 2020

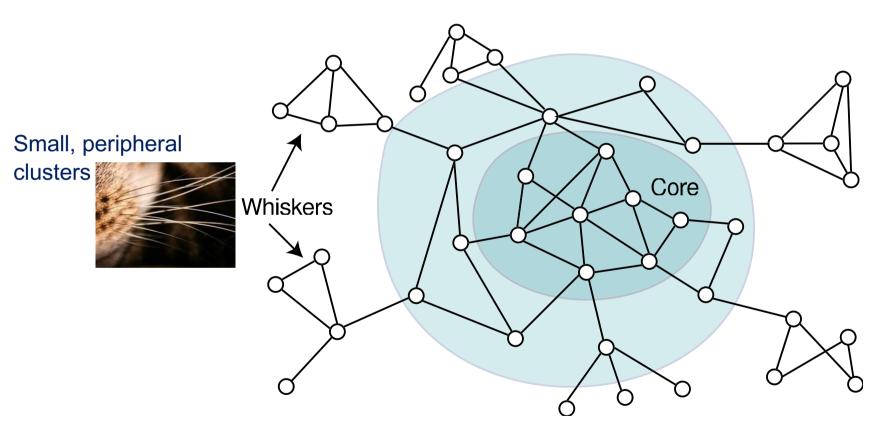


The core periphery model

Lescovec, Lang, Dasgupta, Mahoney, Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters (2008)

https://arxiv.org/abs/0810.1355

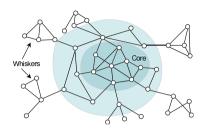
Can we find a justification for this?



Caricature of network structure

Overlapping communities

to explain the core periphery model

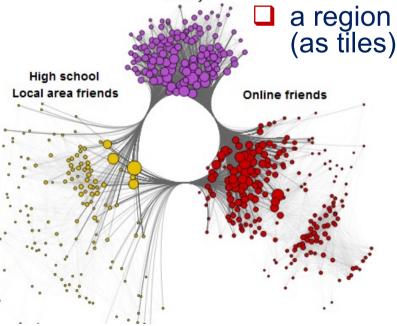


Wiskers

- ☐ are typically of size 100
- are responsible of good communities

Core

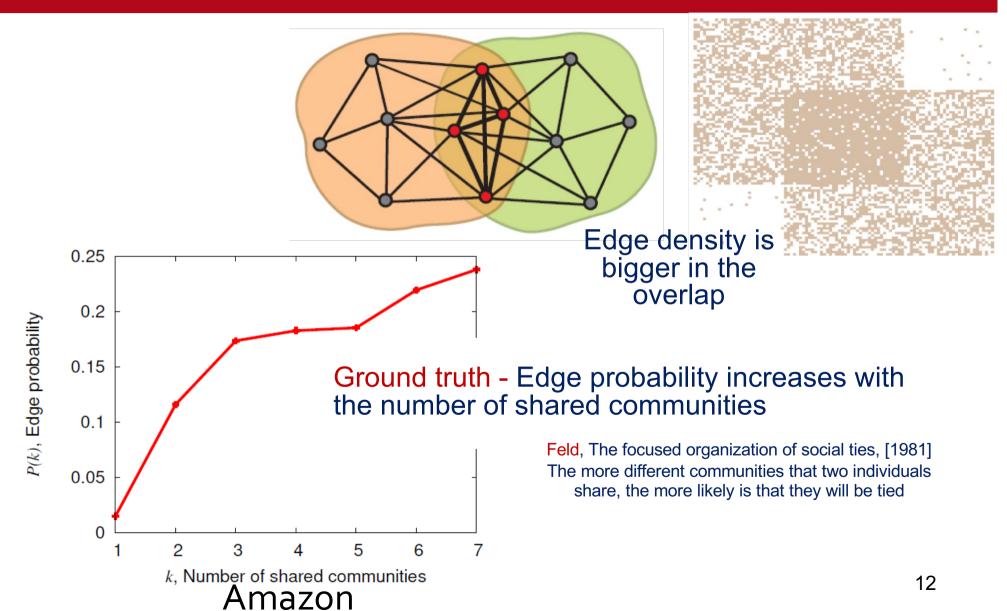
- denser and denser region
- contains 60% nodes and 80% edges
- a region where communities overlap



Family

Measuring overlapping

in social networks



Clustering algorithms

i.e. community detection algorithms

Modularity

Newman, Modularity and community structure in networks (2006) https://www.pnas.org/content/pnas/103/23/8577.full.pdf

Want to:

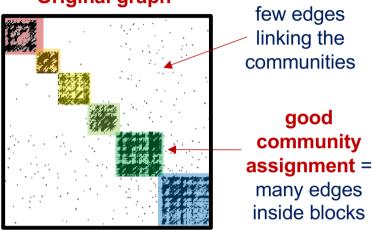
measure of how well a network is partitioned into communities (i.e., sets of tightly connected nodes)

Idea:

- "If the number of edges between two groups is only what one would expect on the basis of random chance, then few thoughtful observers would claim this constitutes evidence of meaningful community structure"
- Modularity is "the number of edges falling within groups minus the expected number in an equivalent network with edges placed at random"
- The higher modularity, the better the community assignment

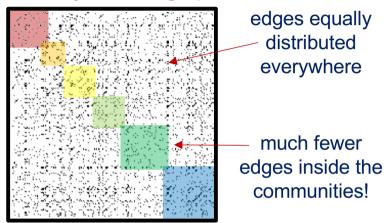
Number of edges falling within groups

an adjacency matrix overview



The sum Q1 of active connections inside the boxes (inside the communities) of the original graph is high!

Randomly rewired graph



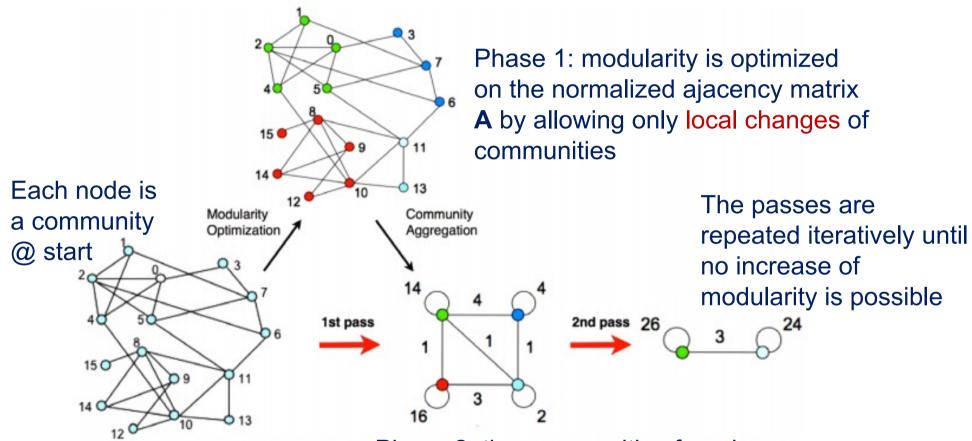
The sum **Q2** of active connections inside the boxes (inside the communities) of the rewired graph is **low**!

Modularity: Q = Q1 – Q2
The higher Q the better the community assignment!

The Louvain algorithm

Blondel, Guillaume, Lambiotte, Lefebvre, Fast unfolding of communities in large networks (2008)

https://arxiv.org/abs/0803.0476



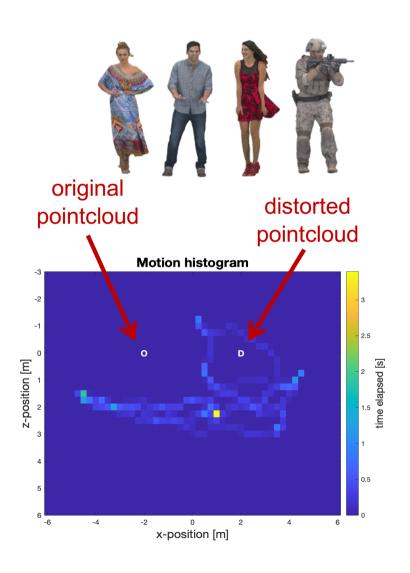
Phase 2: the communities found are aggregated (sum of links) in order to build a new network of communities with normalized adjacency matrix P_{CC}

Characteristics of Louvain

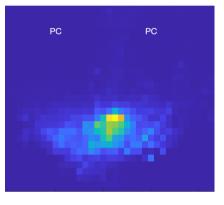
- Implements modularity optimization
- □ <u>Scalable</u> (low complexity)
- Effective
- □ Available as the reference implementation in any programming language
- ☐ A greedy technique (in the order the nodes are searched)

Clustering motion patterns

In immersive environments



Cluster 1: walking from a distance

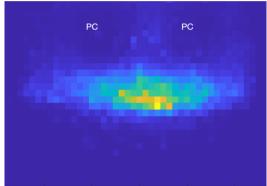


PC

PC

Cluster 3: standing still

Cluster 2: walking closely

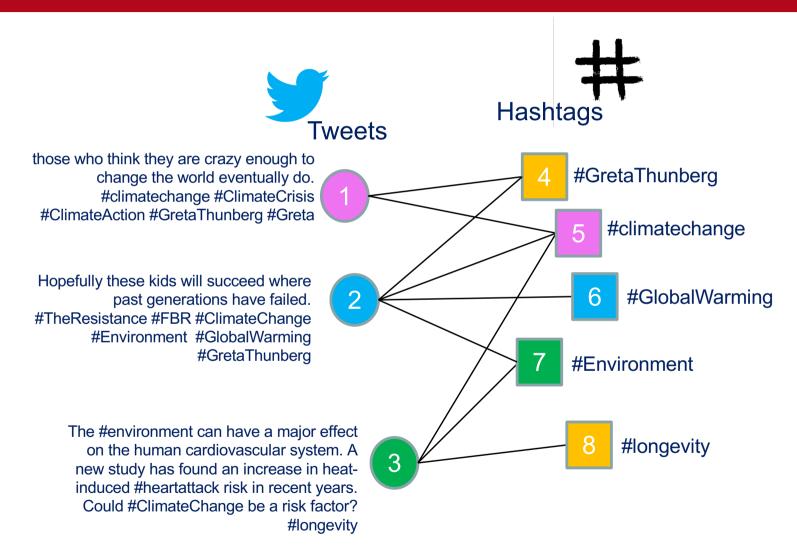


motion behaviours
detected by Louvain on
Pearson correlations
over (filtered) motion
patterns

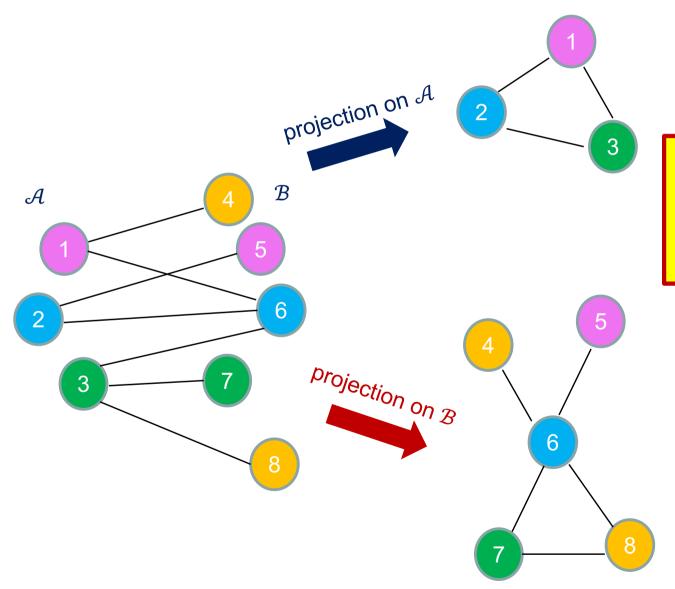
Topic Detection

i.e. community detection in semantic networks

Bipartite graph example



Projections



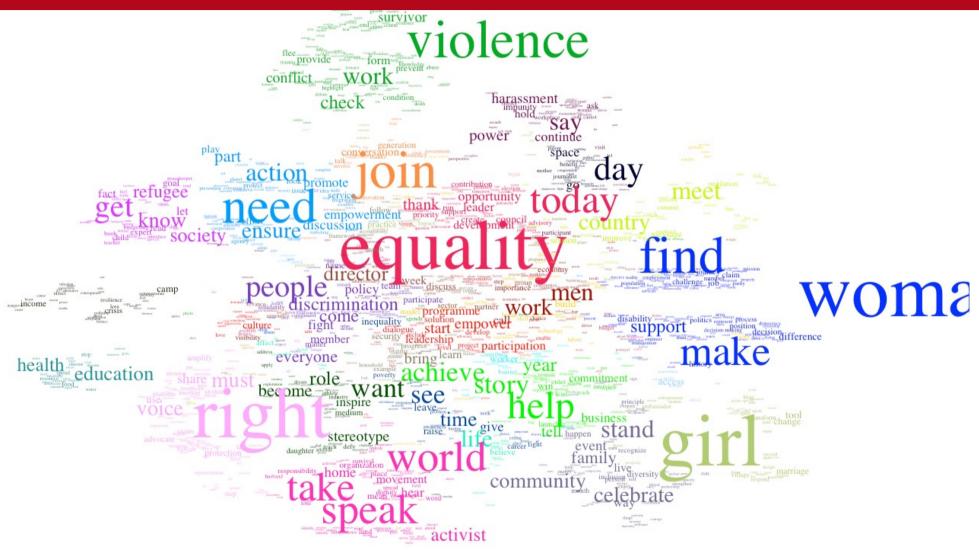
Nodes are linked if they have a common neighbour in \mathcal{B}

PS: we say that nodes *i* and *j* have a common neighbour *k* if both *i* and *j* are connected to *k*

Nodes are linked if they have a common neighbour in \mathcal{A}

Word clustering with Louvain

community detection applied to semantic networks = topic detection



Document clustering with BERTopic

clustering documents into different topics

each document
 is mapped into an
 embedding
 (vector) by BERT

2. cosine metric is used to identify distances among documents

3. UMAP maps into a simpler space (e.g. 2 dimensional)

4. HDBSCAN is run to identify topics

outliers in gray

D2 topic 1 5 drive scsi drives iame v ear baseball legaraspa ganzes pt 14_car_mustang_cars 20_bike bikes_miles 30_radar_detector_detectors_polygon_points 29_lane_ar driving D1 17 spacecraft solar_space 15_space_launch_moon 7_gun_guns_figearmys clipper_chip fbi gas bds 88 tax_taxes_clinton 6 post jim context 4_israel_israeli_jew_sex_sexual 24_hell_god_jesus

- 0_team_game_25
- 1_game_year_baseball
- 2_patients_medical_msg
- 3_key_clipper_chip
- 4_israel_israeli_jews
- 5_drive_scsi_drives
- 6_post_jim_context
- 7_gun_guns_firearms
- 8_god_atheists_atheism
- 9_xterm_echo_x11r5
- 10_modem_port_serial
- 11_jpeg_image_gif
- 12_gay_sex_sexual
- 13_amp_stereo_condition
- 14_car_mustang_cars
- 15_space_launch_moon
- 16_espn_game_pt
- 17_spacecraft_solar_space
- 18_printer_print_hp
- 19_mhz_clock_speed
- 20_bike_bikes_miles
- 21_health_tobacco_disease
- 22_ram_drive_meg
- 23_fbi_gas_bds
- 24_hell_god_jesus
- 25_window_widget_application
- 26_3d_conference_nok

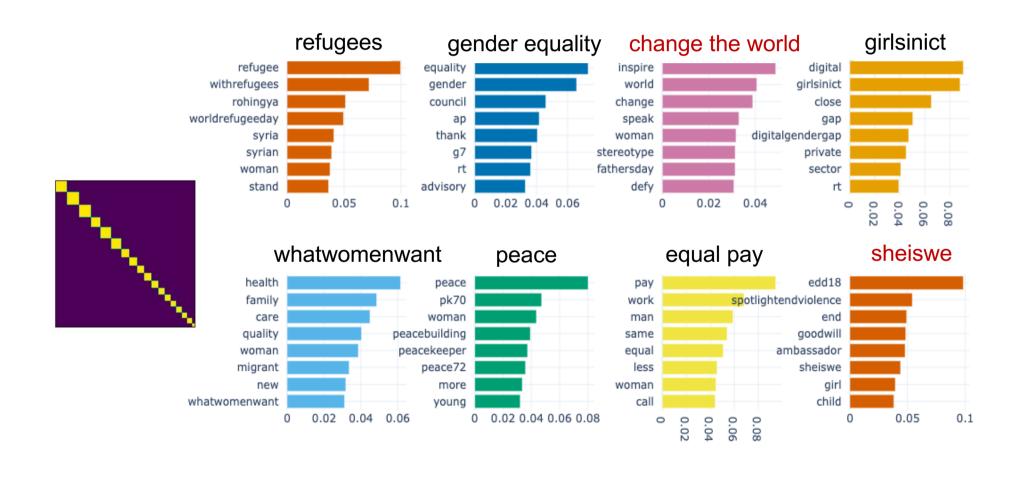
23

topic 1

27 monitor monitors vga

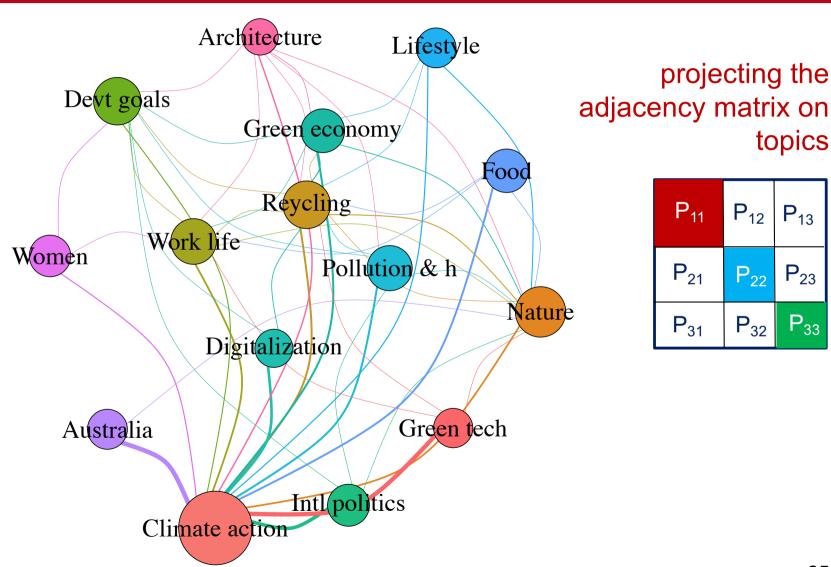
Topic description

In BERTopic, #metoo2018



Topics network

More informative than plotting documents as nodes



Extracting sentiment

And related ideas

Socio-psychological markers

beyond simple sentiment

- Sentiment e.g., positive, negative, neutral enduring cognitive content that defines the affective state
- <u>Emotion</u> e.g., anger, disgust, fear, joy, sadness intense affective state of short duration with a precise cause
- ☐ Ingroup bias e.g., use of pronouns I, we, us tendency to favor one's own group over other groups
- Outgroup bias − e.g., use of pronoun they tendency to dislike members of groups we don't identify with
- ☐ Agency e.g., use of action verbs do, take, make perception that an individual is able to contribute to/a group can collectively reach a social change

LIWC linguistic inquiry and word count

Tausczik, Pennebaker. "The psychological meaning of words: LIWC and computerized text analysis methods." (2010)

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=79d2494cc10a9633c42115df84bb74ed447080f6

https://www.liwc.app/

- word count (or dictionary) methodology
- over 60 dictionaries coded and validated for their accuracy in reflecting psychological content
- □ simplicity of implementation and usage
- □ state-of-the-art in psychology
- ☐ one licence available in the instructor's PC ☺

LIWC categories ingroup and outgroup

Category	Examples	Words in Category	Psychological Correlates	
Linguistic processes Word count			Talkativeness, verbal fluency	
Words/sentence			Verbal fluency, cognitive complexity	
Dictionary words	(Percentage of all words captured by the program)		Informal, nontechnical language	
Words >6 letters	(Percentage of all words longer than 6 letters)		Education, social class	
Total function words	,	464		
Total pronouns	l, them, itself	116	Informal, personal	
Personal pronouns	I, them, her	70	Personal, social	
First-person singular	l, me, mine	12	Honest, depressed, low status, personal, emotional, informal	roup
First-person plural	We, us, our	12	Detached, high status, socially connected to group (sometimes)	
Second person	You, your, thou	20	Social, elevated status	
Third-person singular	She, her, him	17	Social interests, social	outgroup
Third-person plural	They, their, they'd	10	Social interests, out-group awareness (sometimes)	2

LIWC categories

goal orientation, aggression, social concern, emotionality

Category	Examples	Words in Category	Psychological Correlates	
Indefinite pronouns	lt, it's, those	46		
Articles	A, an, the	3	Use of concrete nouns, interest in objects and things	
Common verbs	Walk, went, see	383		
Auxiliary verbs	Am, will, have	144	Informal, passive voice	focus on
Past tense	Went, ran, had	145	Focus on the past	past, present
Present tense	ls, does, hear	169	Living in the here and now	or future
Future tense	Will, gonna	48	Future and goal oriented	7
Adverbs	Very, really, quickly	69	8	_
Prepositions	To, with, above	60	Education, concern with precision	
Conjunctions	And, but, whereas	28		
Negations	No, not, never	57	Inhibition	
Quantifiers	Few, many, much	89		
Numbers	Second, thousand	34		
Swear words	Damn, piss, fuck	53	Informal, aggression,	
Psychological processes				
Social processes	Mate, talk, they, child	455	Social concerns, social	
			support	
Family	Daughter, husband	64		
Friends	Buddy, friend, neighbor	37		
Humans	Adult, baby, boy	61		
Affective processes	Happy, cried, abandon	915	Emotionality	30

LIWC categories a full list

WC	Analytic	Clout	Authentic	Tone	WPS	Sixltr	Dic	function	pronoun
ppron	i	we	you	shehe	they	ipron	article	prep	auxverb
adverb	conj	negate	verb	adj	compare	interrog	number	quant	affect
posemo	negemo	anx	anger	sad	social	family	friend	female	male
insight	cause	discrep	tentat	certain	differ	percept	see	hear	feel
bio	body	health	sexual	ingest	drives	affiliation	achieve	power	reward
risk	focus past	focus present	focus future	relativ	motion	space	time	work	leisure
home	money	relig	death	informal	swear	netspeak	assent	nonflu	filler
AllPunc	Period	Comma	Colon	SemiC	QMark	Exclam	Dash	Quote	Apostro
Parenth	cogproc								

Choose the ones of interest to your project!

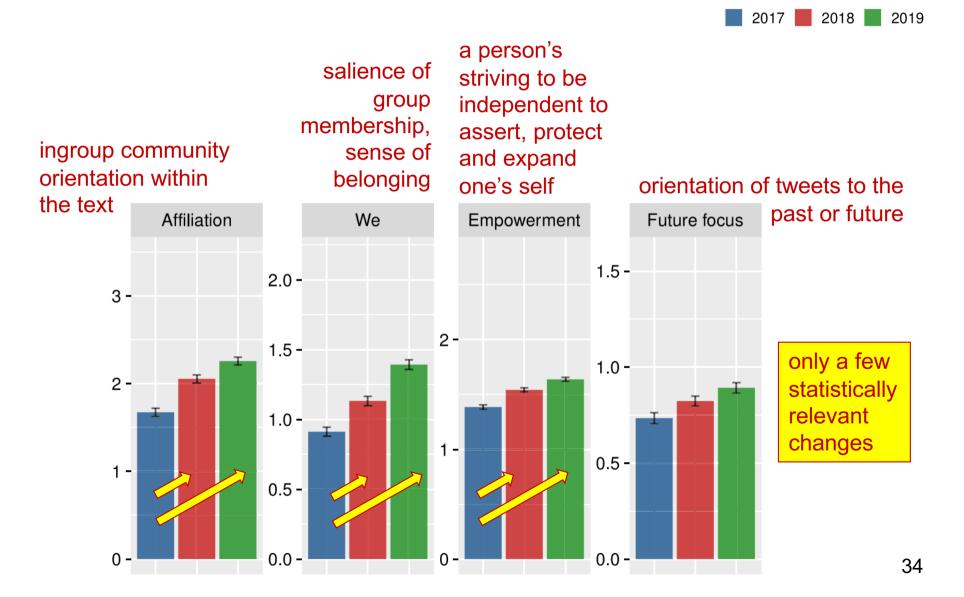
LIWC (in Python) at work

	translated	i	we	body	social	past	future
0	I MISSED YOU GUYSS	25.000000	0.0	0.000000	50.000000	25.0	0.000000
1	we love you so much namjoon 😂 💙 💙	0.000000	10.0	0.000000	30.000000	0.0	0.000000
2	haters: ♥♥♀₩♦\nBP: ♥◆₩३₽	0.000000	0.0	0.000000	0.000000	0.0	0.000000
3	BLACKPINK BEST GROUP IN THE WORLD !!!	0.000000	0.0	0.000000	11.111111	0.0	0.000000
4	l love Changbin's humor ຜ∂ຜ❤	12.500000	0.0	0.000000	12.500000	0.0	0.000000
153	My legs are so big	20.000000	0.0	20.000000	0.000000	0.0	0.000000
154	ne ne	0.000000	0.0	0.000000	0.000000	0.0	0.000000
155	I think not being able to see it live will be	9.523810	0.0	0.000000	0.000000	0.0	4.761905
156	MY BABIES	50.000000	0.0	0.000000	50.000000	0.0	0.000000
157	I learned it from the foot steps.	14.285714	0.0	14.285714	0.000000	0.0	0.000000

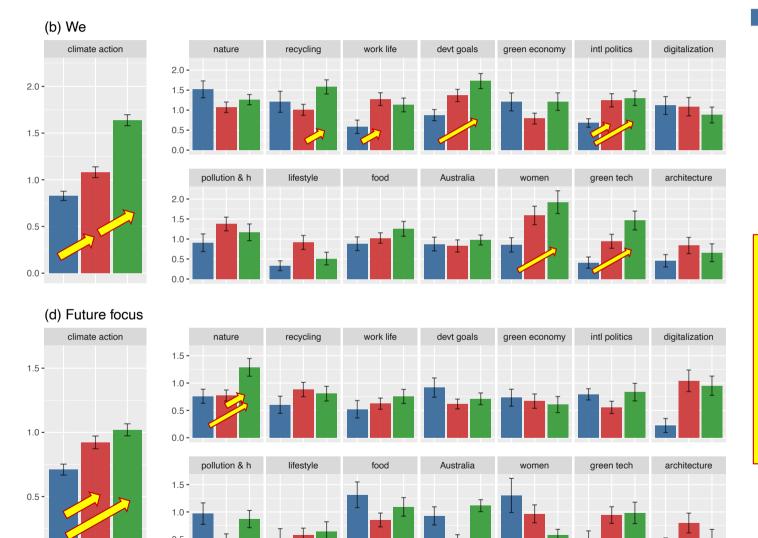
Agency/Communion (in Python) at work

	translated	Dic	WC	BigWords	Numbers	AllPunct	Period	Comma	QMark	Exclam	Apostro	Agency	Communion
0	I MISSED YOU GUYSS	25.000000	4.0	0.000000	0.0	0.000000	0.000000	0.0	0.0	0.0	0.000	25.000000	0.000000
1	we love you so much namjoon	30.000000	10.0	10.000000	0.0	0.000000	0.000000	0.0	0.0	0.0	0.000	10.000000	20.000000
2	haters: 💟 😺 🦂	0.000000	12.0	0.000000	0.0	0.166667	0.000000	0.0	0.0	0.0	0.000	0.000000	0.000000
3	BLACKPINK BEST GROUP IN THE WORLD !!	11.111111	9.0	11.111111	0.0	0.000000	0.000000	0.0	0.0	0.0	0.000	0.000000	11.111111
4	I love Changbin's humor ຜຜູ	12.500000	8.0	12.500000	0.0	0.125000	0.000000	0.0	0.0	0.0	0.125	0.000000	12.500000

Socio-psychological linguistic markers on #climatechange



Socio-psychological linguistic markers a view inside topics

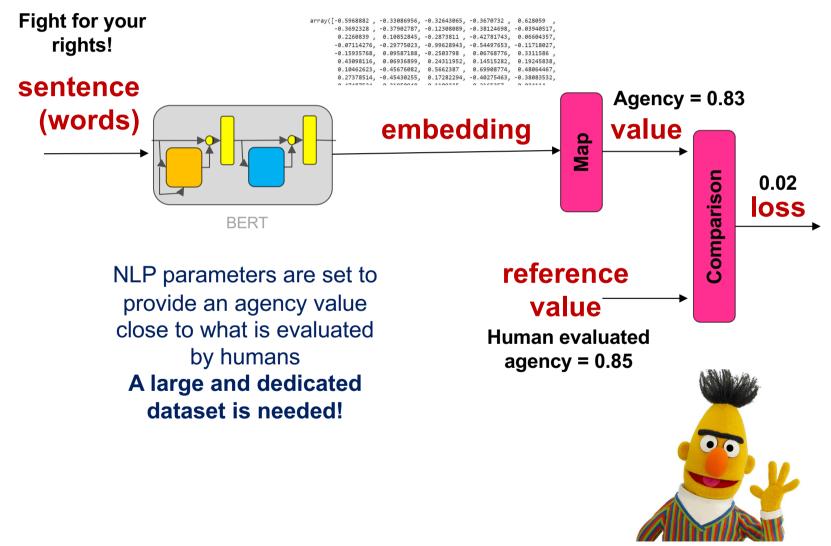


relevant
statistically
changes of
we-future
only in the
climate
action
community

2018

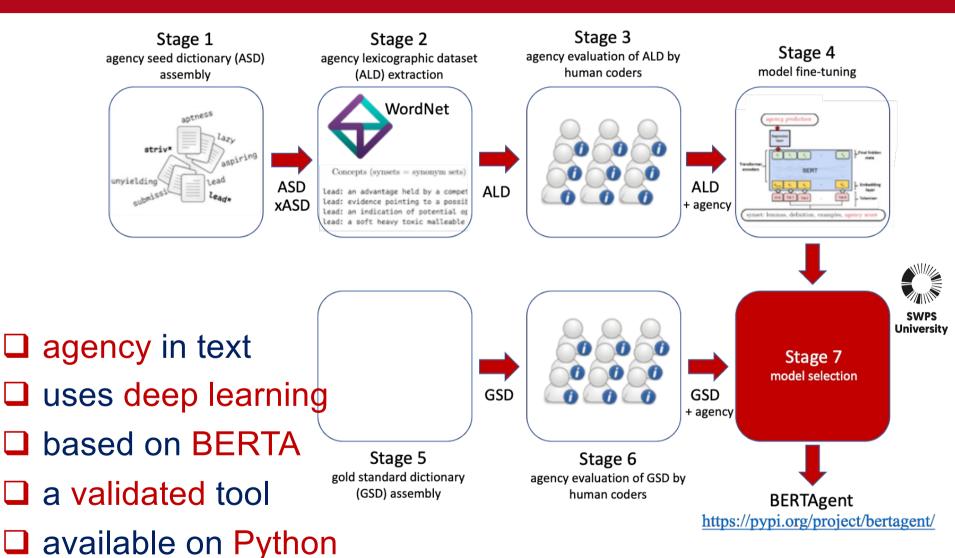
Using AI to predict sociopsychological markers

BERT Training a NLP tool



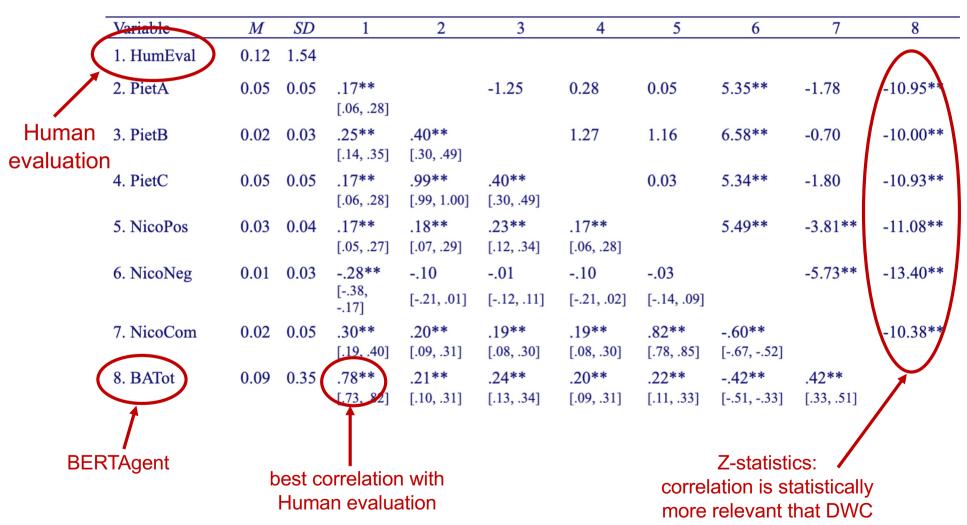
BERTAgent

Nikadon et al., «BERTAgent: A novel tool to quantify agency in textual data,» (2023) https://psyarxiv.com/qw6u3



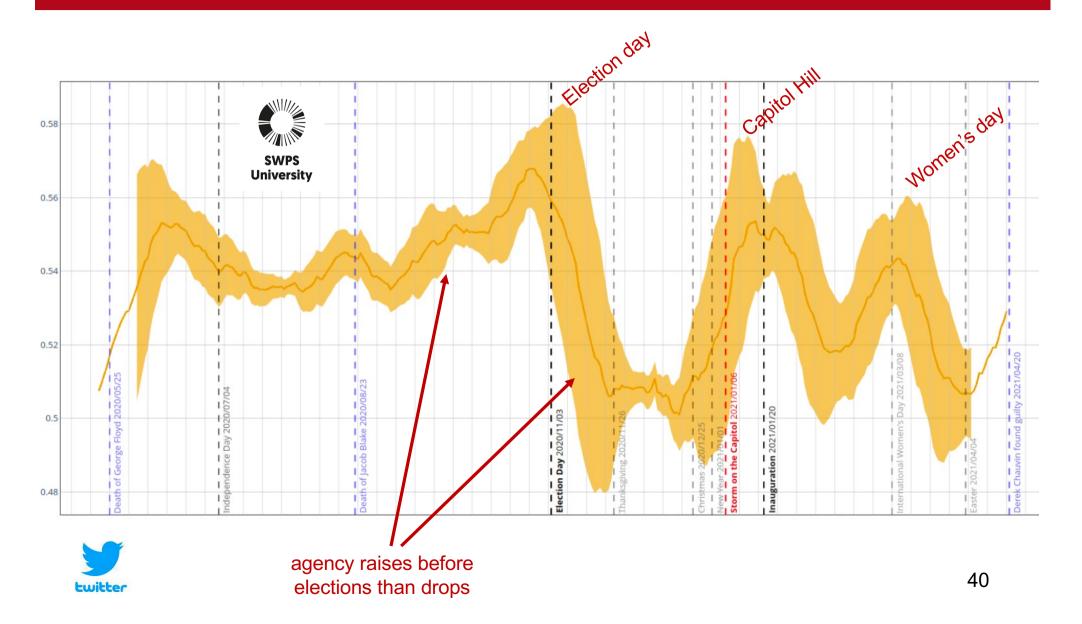
Validation of BERTAgent

deep learning wins versus DWC = dictionary word count



Agency in US elections

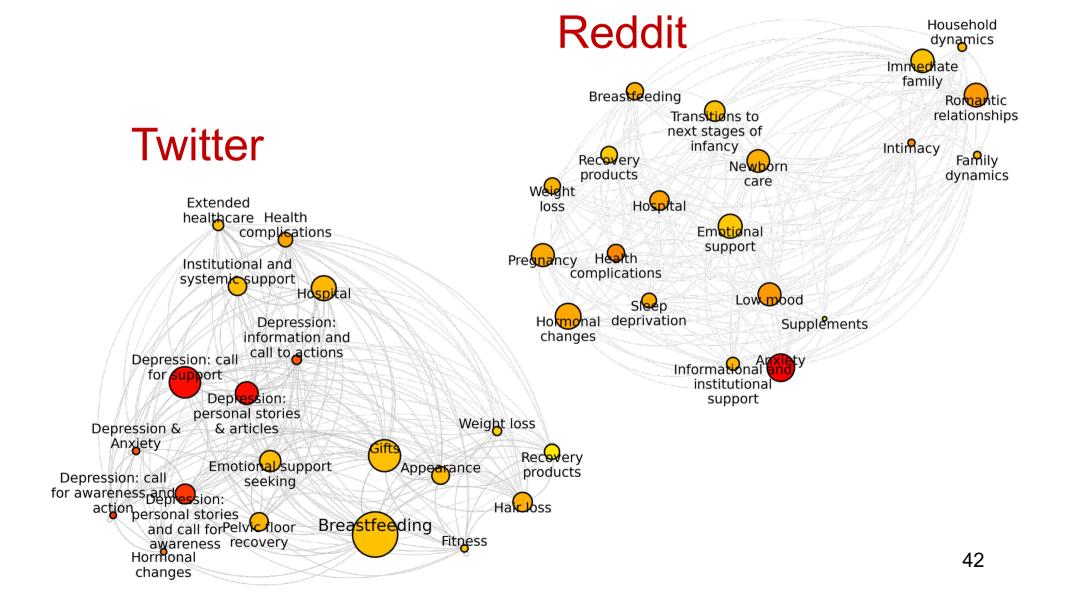
Twitter, 2020-2021 by Jan Nikadon @ swps



BERTAgent at work

	translated	agency
0	I MISSED YOU GUYSS	-0.331446
1	we love you so much namjoon (***********************************	0.009748
2	haters: ູູູ່່ ເພື່⊕\nBP: 🍑 → 🕍 🐉 🥬	-0.261824
3	BLACKPINK BEST GROUP IN THE WORLD 4 4	0.058124
4	I love Changbin's humor ⊌⊌♥	0.077732
153	My legs are so big	-0.065885
154	ne ne	-0.124783
155	I think not being able to see it live will be	-0.230997
156	MY BABIES	0.024777
157	I learned it from the foot steps.	0.133080

Agency in postpartum depression Topics view



Cardiff NLP on emotions

https://huggingface.co/cardiffnlp/twitter-roberta-large-emotion-latest

	translated	anger	anticipation	disgust	fear	joy	love	optimism	pessimism	sadness	surprise	trust
0	I MISSED YOU GUYSS	0.0121	0.0890	0.0381	0.0474	0.1375	0.2628	0.0180	0.1967	0.9927	0.0232	0.0251
1	we love you so much namjoon	0.0183	0.0224	0.0183	0.0096	0.9826	0.9934	0.4805	0.0186	0.0637	0.0150	0.0883
2	haters: ♡⊌∯∰♠ \nBP: ♥◆₩፠₡	0.9528	0.0583	0.4327	0.0054	0.8497	0.0789	0.5624	0.0130	0.0477	0.0095	0.0380
3	BLACKPINK BEST GROUP IN THE WORLD !!! !	0.0203	0.2438	0.0112	0.0068	0.9874	0.8841	0.6740	0.0142	0.0147	0.1182	0.6141
4	I love Changbin's humor ຜ່‱❤	0.0136	0.0297	0.0149	0.0113	0.9856	0.9942	0.5646	0.0188	0.0732	0.0193	0.1168
153	My legs are so big	0.0138	0.1850	0.0256	0.2976	0.5866	0.0316	0.1099	0.0345	0.2241	0.2603	0.0221
154	ne ne	0.0241	0.0774	0.0888	0.0284	0.0159	0.0024	0.0128	0.0415	0.1520	0.0087	0.0044
155	I think not being able to see it live will be	0.0114	0.1195	0.0499	0.0344	0.0823	0.0305	0.0493	0.4038	0.9966	0.0183	0.0148
156	MY BABIES	0.0137	0.0416	0.0367	0.0604	0.7553	0.9666	0.0974	0.0536	0.7570	0.0205	0.0484
157	I learned it from the foot steps.	0.0061	0.4315	0.0093	0.0165	0.0962	0.0099	0.5374	0.0292	0.0271	0.0167	0.1124

158 rows x 12 columns

Cardiff NLP on sentiment

https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest

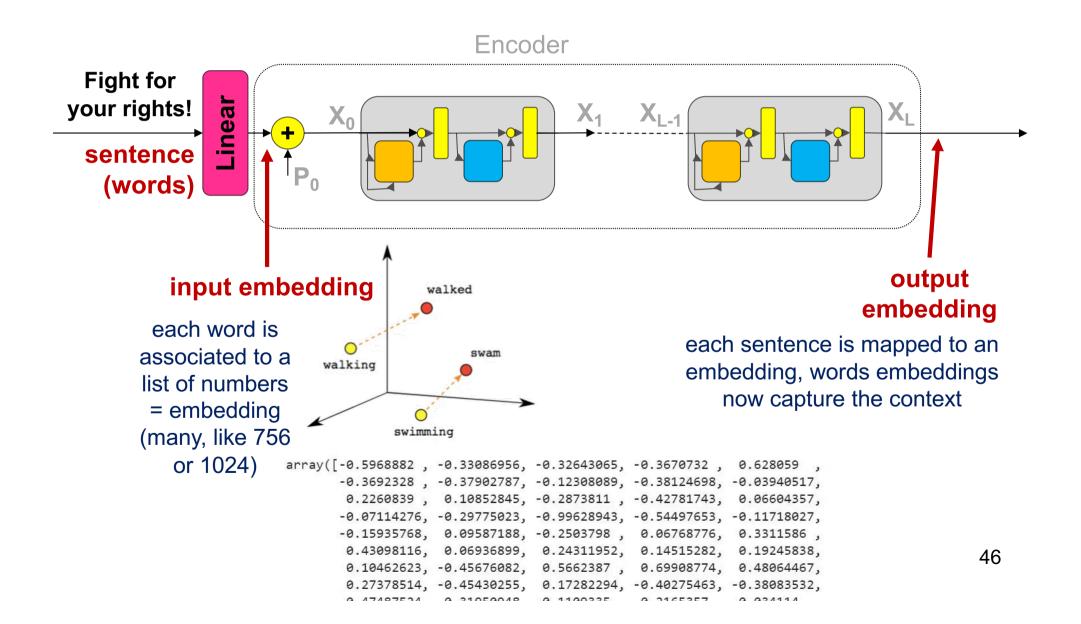
	translated	sentiment	score
0	I MISSED YOU GUYSS	positive	0.9299
1	we love you so much namjoon@	positive	0.9859
2	haters: ♥���\mo\nBP: ♥◆₩፠∅	negative	0.4806
3	BLACKPINK BEST GROUP IN THE WORLD 2004	positive	0.9798
4	I love Changbin's humor ⊜⊜♥	positive	0.9793
153	My legs are so big	neutral	0.4214
154	ne ne	neutral	0.5957
155	I think not being able to see it live will be	negative	0.8737
156	MY BABIES	positive	0.9029
157	I learned it from the foot steps.	neutral	0.6420

How Al machines work

An intuitive overview

Transformer Architecture

Vaswani, Ashish, et al. "Attention is all you need" (2017) Google's patent https://patents.google.com/patent/US10452978B2/en



Attention (machine learning)

Article Talk

From Wikipedia, the free encyclopedia

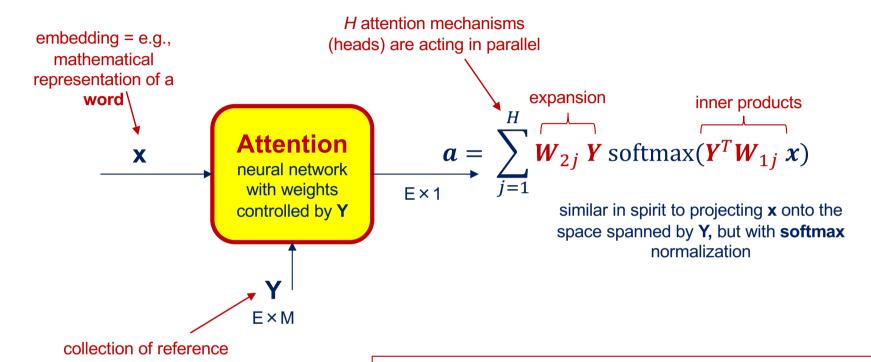
In artificial neural networks, attention is a technique that is meant to mimic cognitive attention. This effect enhances some parts of the input data while diminishing other parts — the motivation being that the network should devote more focus to the important parts of the data, even though they may be small portion of an image or sentence. Learning which part of the data is more important than another depends on the context, and this is trained by gradient descent.

embeddings = e.g., a

document

The Attention Module

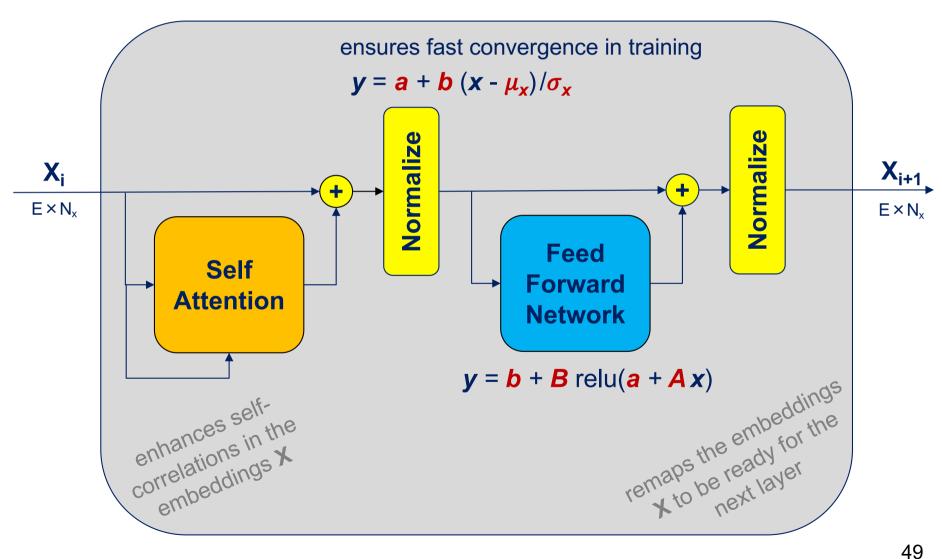
Vaswani, Ashish, et al. "Attention is all you need" (2017)



The embedding of each word is built by using only the information (embeddings) of the other words in the sentence, in such a way to create context, and deal with polysemy and negations

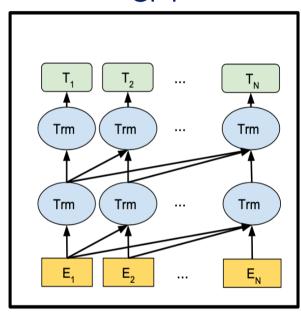
Encoder

a serie of multi-head self-attention modules

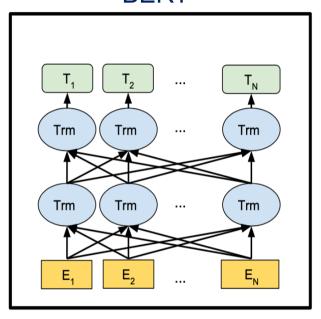


Two approaches

To capture content



BERT



preceeding words words

Only uses Uses all the other

Context Context Causality

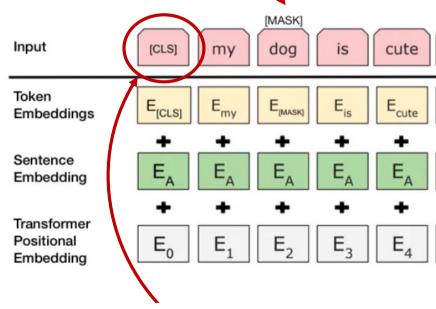
BERT pre-training procedure

BooksCorpus (800M words) + English Wikipedia (2,500M words)

Masked Language Model

15% masked tokens replaced with:

- [MASK] token (80% of the times)
- Original token (10%)
- Random token (10%)



Output [CLS] fed into an additional output layer for softmax classification (of correct/wrong next sequence)

Some words are masked and the algorithm is trained in order to correctly recover the original word (by closeness in the embedding space)

This creates context,
based on text redudancy
and statistical
occurrencies (frequently
occurring patterns are
memorized)

Radford, Alec, et al. "Language models are unsupervised multitask learners" (2019)

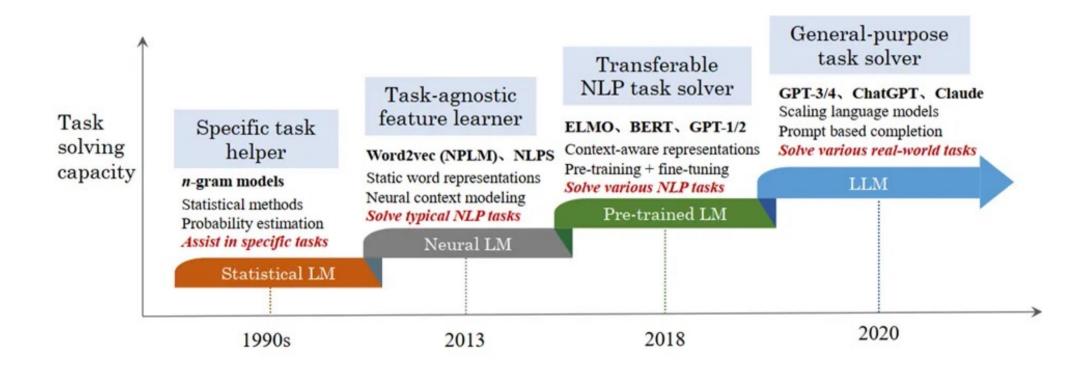
language provides a flexible way to specify tasks, inputs, and outputs all as a sequence of symbols... it is therfore possible to **train a single model** with **sufficient capacity** to infer and perform many **different tasks**

Parameters	Layers	$\overline{d_{model}}$
11 7M	12	768 GPT, BERT-base
345M	24	1024 BERT-large
762M	36	1280
1542M	48	1600 GPT-2

WebText

scraping all outbound links (45M links) from Reddit, a social media platform, which received at least 3 karma – exclude WikiPedia

An evolution map



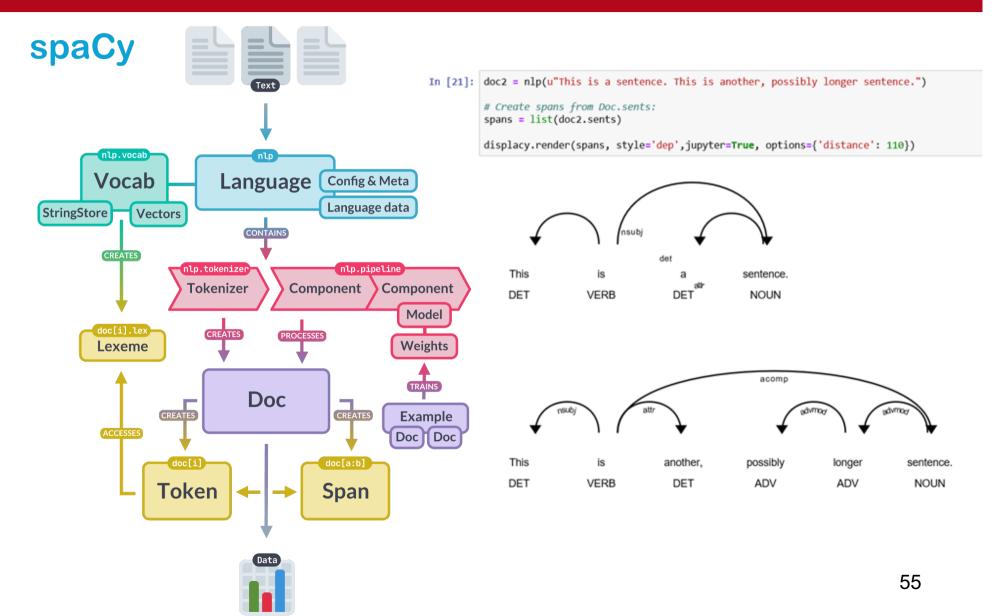
NLP tasks

some fine-tuning possibilities in NLP

Task	Description	Possible approach
Masked language prediction	predict masked words in a text	This is what BERT model is pre-trained for
Text classification or Sentiment analysis	assign a label to a given sequence of text	Apply linear transform+softmax on K classes, and train the model for the specific classification task
Text translation	translate a text	Need to pre-train a full Transfomer Architecture for this task
Summarization	generate a summary of a document	GPT example: context given by a document; then generate 100 tokens by top-2 random sampling (Fan et al., 2018), i.e., take at each step the most likely next word at random among the top-2 candidates; finally select first 3 sentences as abstract
Question answering	answer a question	GPT example: the context of the language model is seeded with example question answer pairs which helps the model infer the short answer style of the dataset
Document question answering	answer a question on a given text	GPT example: context seeded by a text; then as for question answering
Conversational	ChatBot	InstructGPT/ChatGPT: Fine-tuned models using reinforcement learning from human feedback

SpaCy

https://spacy.io/



SpaCy part-of-speech (POS) tags

https://spacy.io/

POS	description	example
ADJ	adjective	big, old, green, incomprehensible, first
ADP	adposition	in, to, during
ADV	adverb	very, tomorrow, down, where, there
AUX	auxiliary	is, has (done), will (do), should (do)
CONJ	conjunction	and, or, but
CCONJ	coordinating conjunction	and, or, but
DET	determiner	a, an, the
INTJ	interjection	psst, ouch, bravo, hello
NOUN	noun	girl, cat, tree, air, beauty
NUM	numeral	1, 2017, one, seventy- seven, IV, MMXIV

POS	description	example
PART	particle	's, not,
PRON	pronoun	I, you, he, she, myself, themselves, somebody
PROPN	proper noun	Mary, John, London, NATO, HBO
PUNCT	punctuation	., (,), ?
SCONJ	subordinating conjunction	if, while, that
SYM	symbol	\$, %, §, ©, +, -, ×, ÷, =, :),
VERB	verb	run, runs, running, eat, ate, eating
X	other	sfpksdpsxmsa
SPACE	space	

