

UNIVERSITÀ
DEGLI STUDI
DI PADOVA

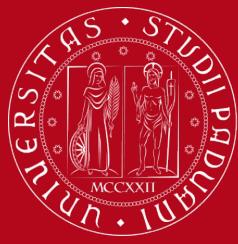
Social Network Analysis

A.Y. 23/24

Communication Strategies

PageRank

a centrality measure based on the web

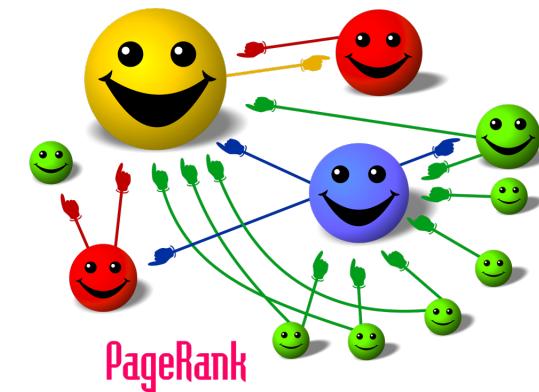


PageRank

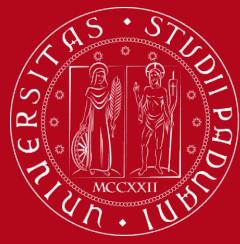
From Wikipedia, the free encyclopedia

PageRank (PR) is an [algorithm](#) used by [Google Search](#) to rank [web pages](#) in their [search engine](#) results. PageRank was named after [Larry Page](#),^[1] one of the founders of Google. PageRank is a way of measuring the importance of website pages. According to Google:

PageRank works by counting the number and quality of links to a page to determine a rough estimate of how important the website is. The underlying assumption is that more important websites are likely to receive more links from other websites.^[2]

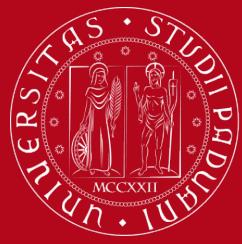


Currently, PageRank is not the only algorithm used by Google to order search results, but it is the first algorithm that was used by the company, and it is the best known.^{[3][4]} As of September 24, 2019, PageRank and all associated patents are expired.^[5]

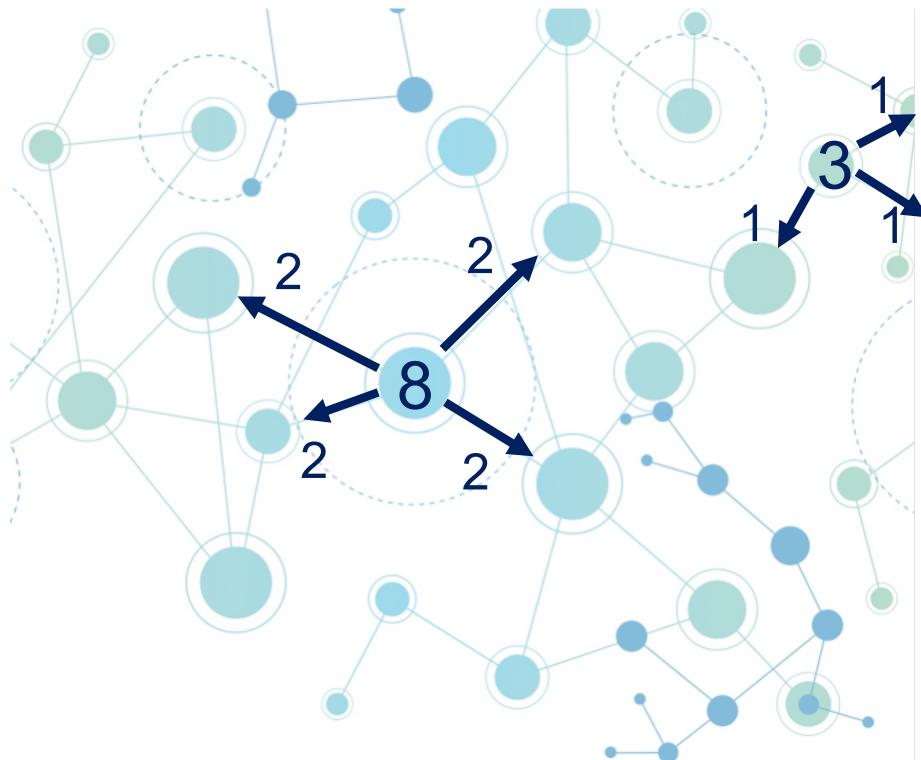


How to organise the web? links as votes

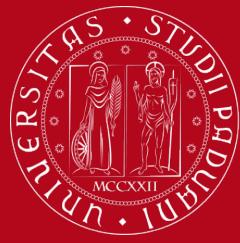
- ❑ the higher the **number of incoming links**, the more important a node
- ❑ the more important a node, the more **valuable** the output links



Step 1: spread (evenly) information (on centrality) from each node



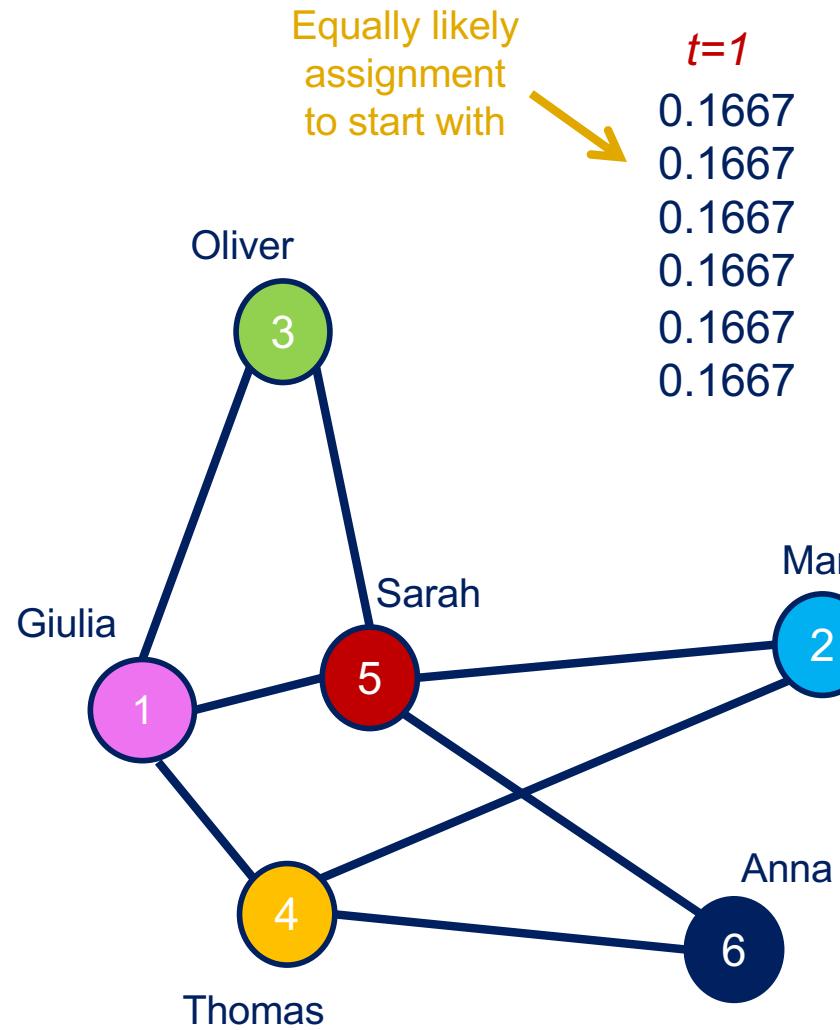
in the web this corresponds to the idea that starting from a web page you choose with equal probability one of the sites linked by the page



in the web this roughly corresponds to the chance (probability) of ending in a specific web page

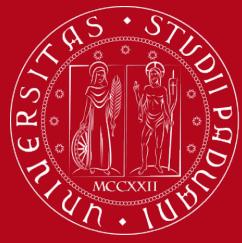
Step 2: collect spreaded information at each node (until convergence)





$t=1$	2	3	4	5		
0.1667	0.1806	0.1991	0.1723	0.2025		
0.1667	0.0972	0.1505	0.1040	0.1436		
0.1667	0.0972	0.1366	0.1179	0.1287		
0.1667	0.2222	0.1574	0.2168	0.1614		
0.1667	0.3056	0.2060	0.2851	0.2203		
0.1667	0.0972	0.1505	0.1040	0.1436		
10	20	50	75	100		
0.1783	0.1848	0.1874	0.1875	0.1875	Giulia	
0.1153	0.1222	0.1249	0.1250	0.1250	Marc	
0.1242	0.1248	0.1250	0.1250	0.1250	Oliver	
0.2020	0.1917	0.1876	0.1875	0.1875	Thomas	
0.2649	0.2543	0.2501	0.2500	0.2500	Sarah	
0.1153	0.1222	0.1249	0.1250	0.1250	Anna	

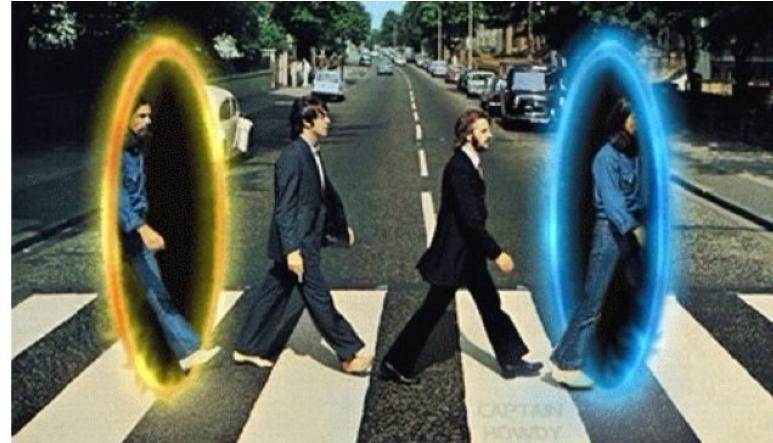
Equal to
(normalized)
degree centrality
in undirected
networks !!!

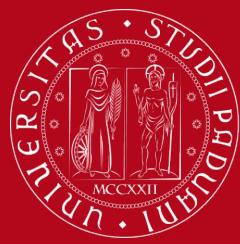


Idea:

the surfer does not necessarily move to one of the links of the page she/he is viewing:

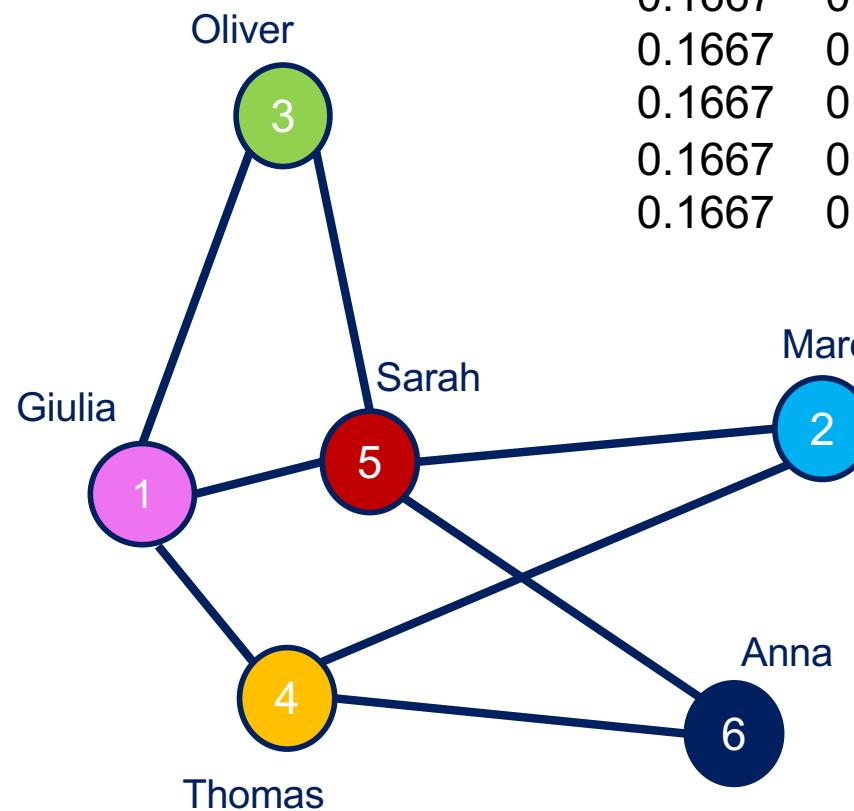
- it does with probability, say $c = 85\%$
- with probability $1 - c = 15\%$ it might jump to a random page (according to a predetermined **policy**)





Example

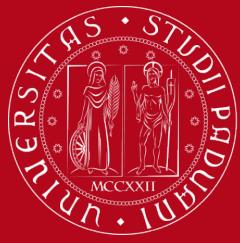
teleportation on a friends' network – random policy



$t=1$	2	3	4	5
0.1667	0.1785	0.1919	0.1754	0.1912
0.1667	0.1076	0.1461	0.1176	0.1382
0.1667	0.1076	0.1361	0.1246	0.1302
0.1667	0.2139	0.1671	0.2035	0.1746
0.1667	0.2847	0.2128	0.2614	0.2276
0.1667	0.1076	0.1461	0.1176	0.1382

not anymore
identical to
degree
centrality !!!

10	20	50	75	100	
0.1820	0.1839	0.1840	0.1840	0.1840	Giulia
0.1273	0.1293	0.1294	0.1294	0.1294	Marc
0.1283	0.1285	0.1285	0.1285	0.1285	Oliver
0.1902	0.1873	0.1871	0.1871	0.1871	Thomas
0.2449	0.2419	0.2417	0.2417	0.2417	Sarah
0.1273	0.1293	0.1294	0.1294	0.1294	Anna



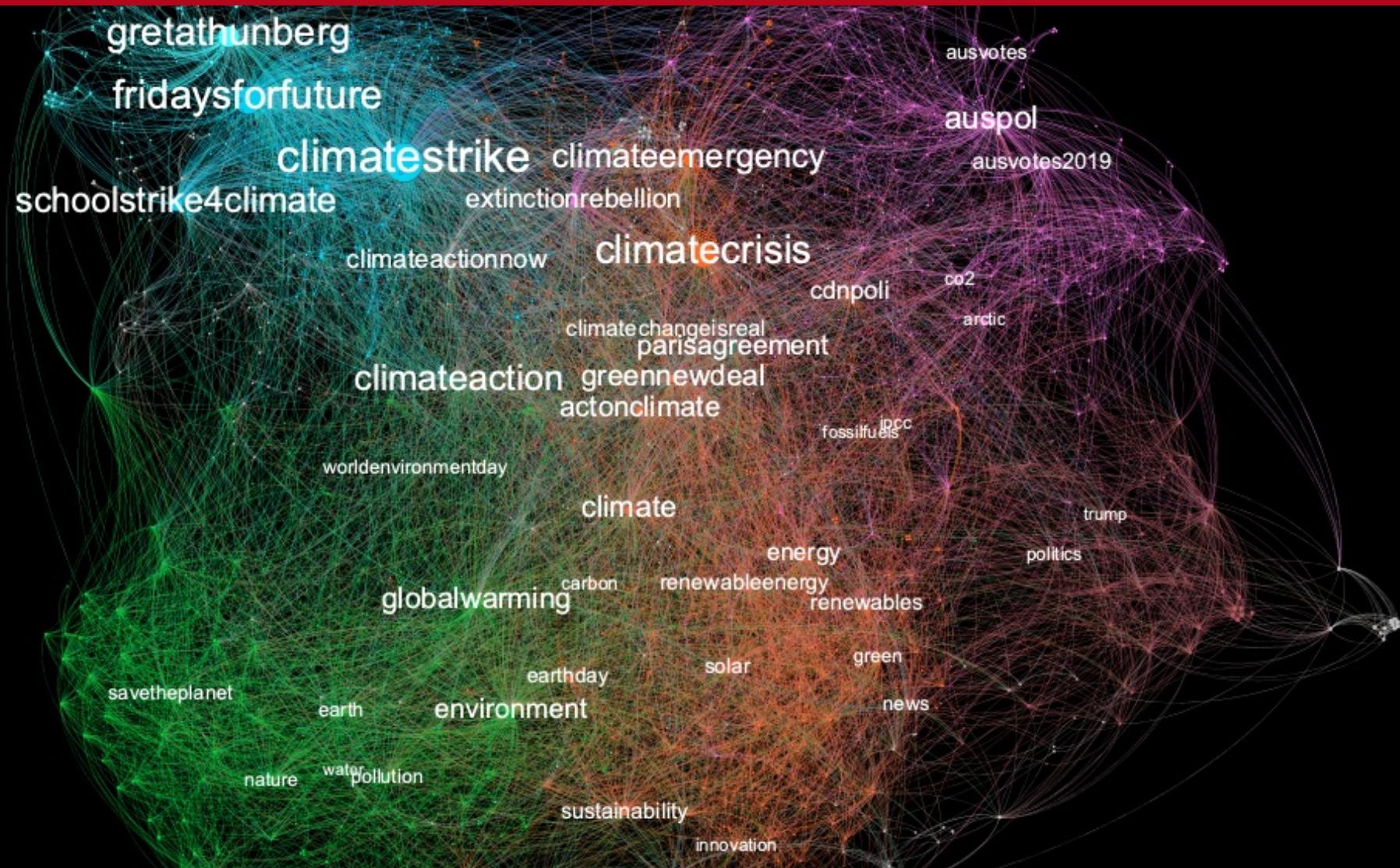
- PageRank can capture the subtleties of networks
- Similar, but more reliable than degree
- Simple to implement (scalable)
- Want to see this in your projects

Visualizing PageRank

a comparison with degree centrality

PageRank on a semantic network

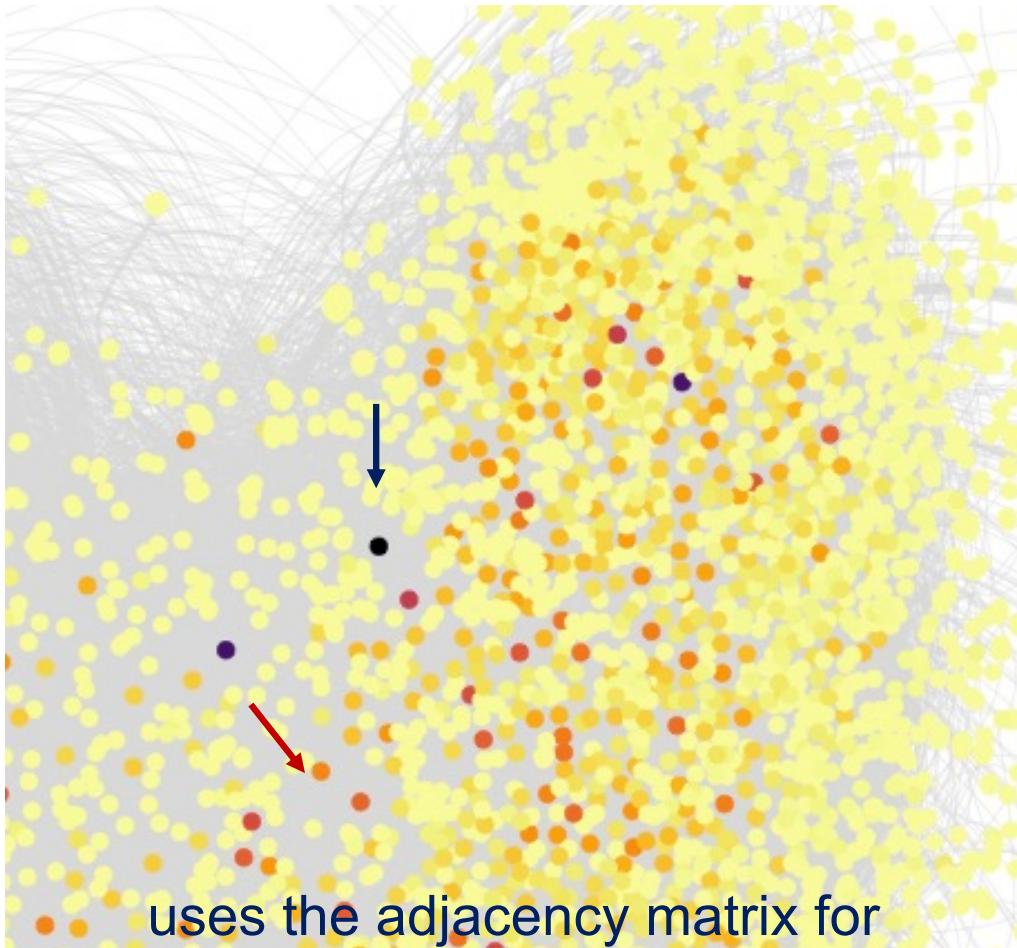
2019 hashtag network related to #climatechange (from Twitter, after #gretathunberg)



Example of PageRank centrality

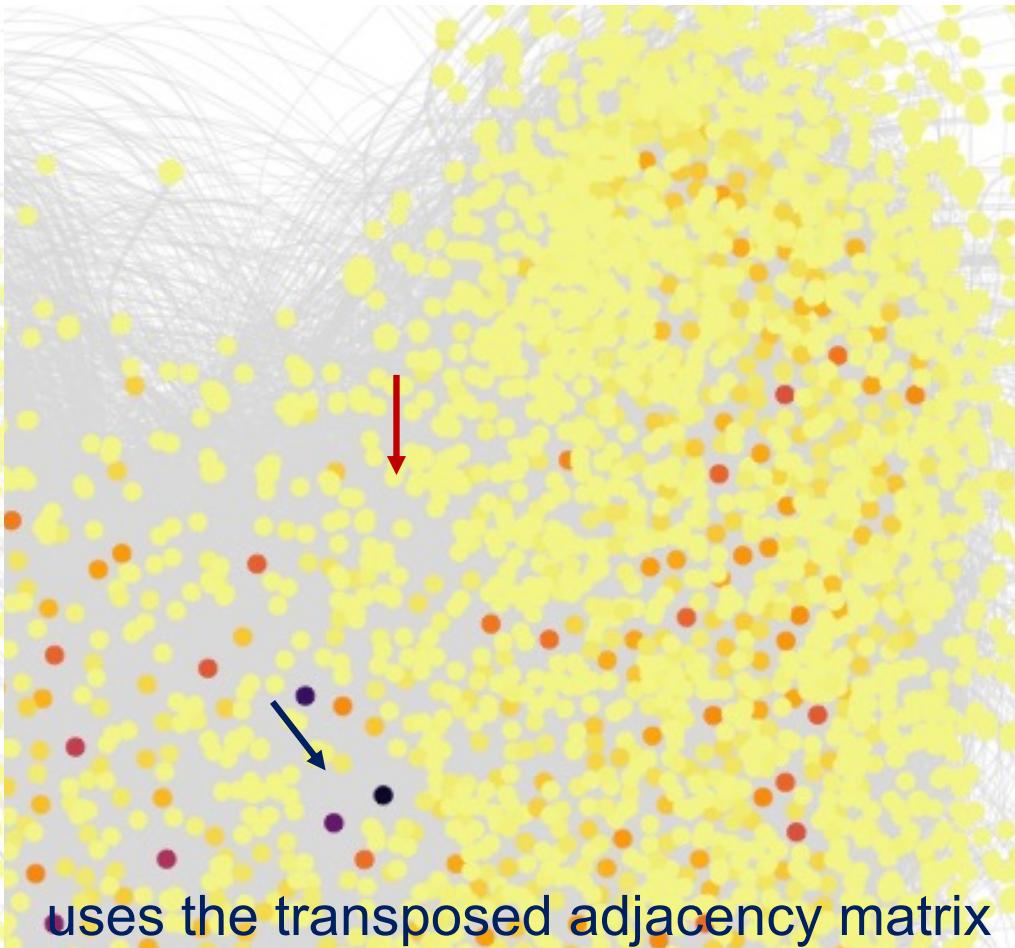
wikipedia administrator elections and vote history data
<https://snap.stanford.edu/data/wiki-Vote.html>

Authorities



uses the adjacency matrix for
spreading

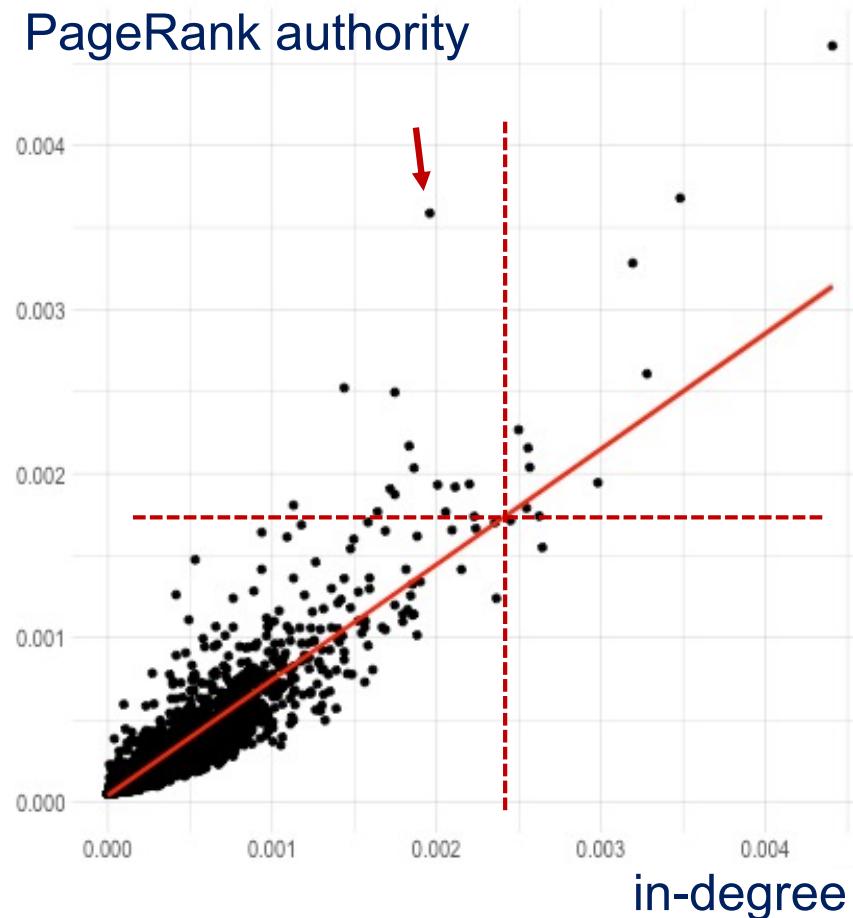
Hubs



uses the transposed adjacency matrix
for spreading (spreading backwards)

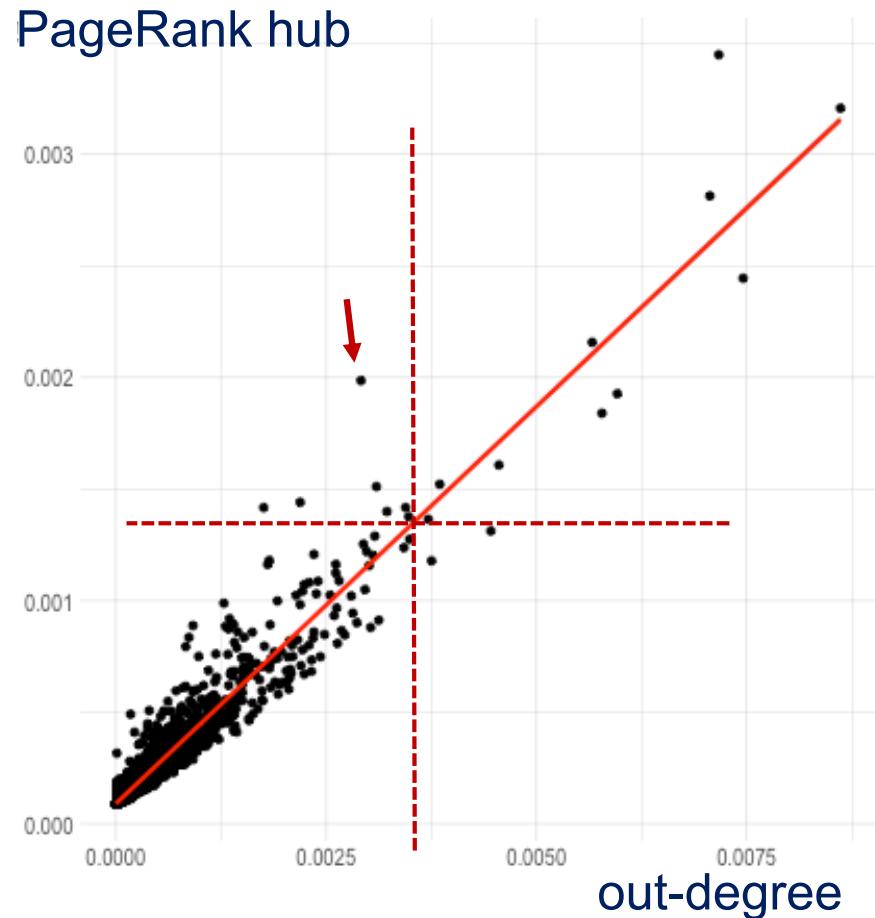
Authorities

PageRank authority



Hubs

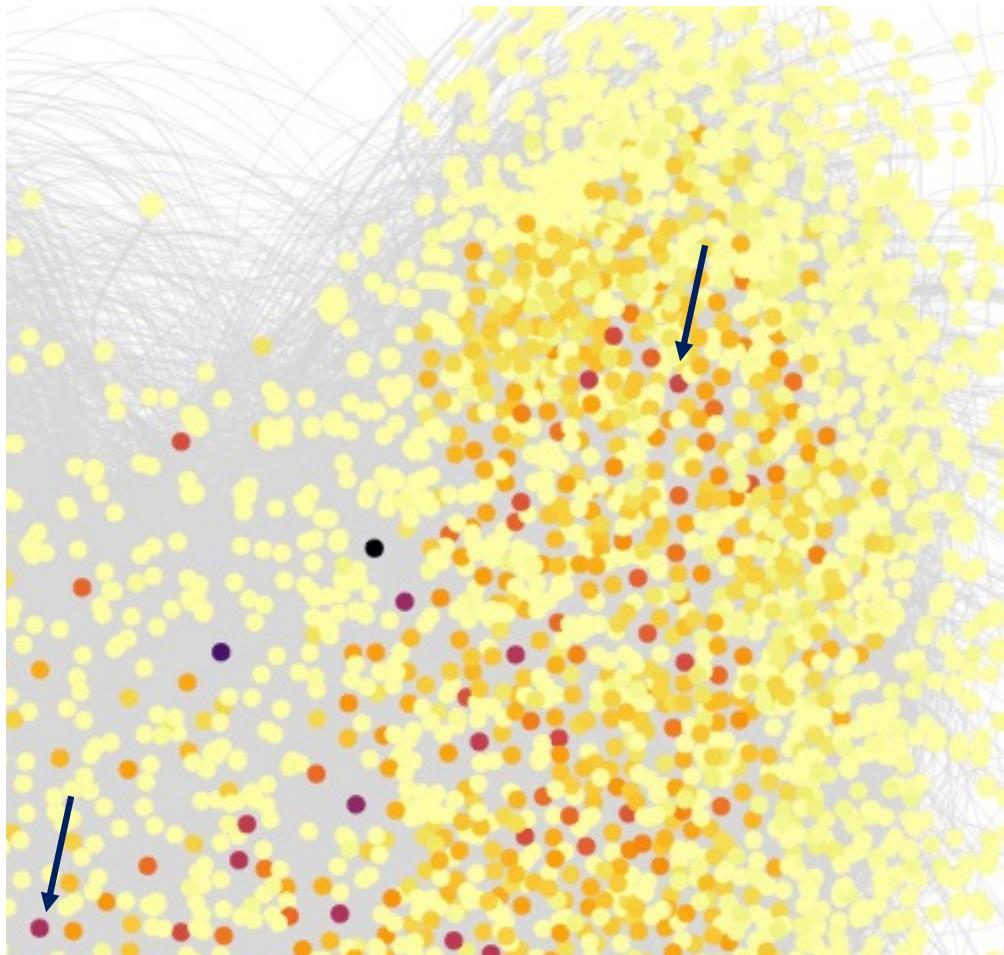
PageRank hub



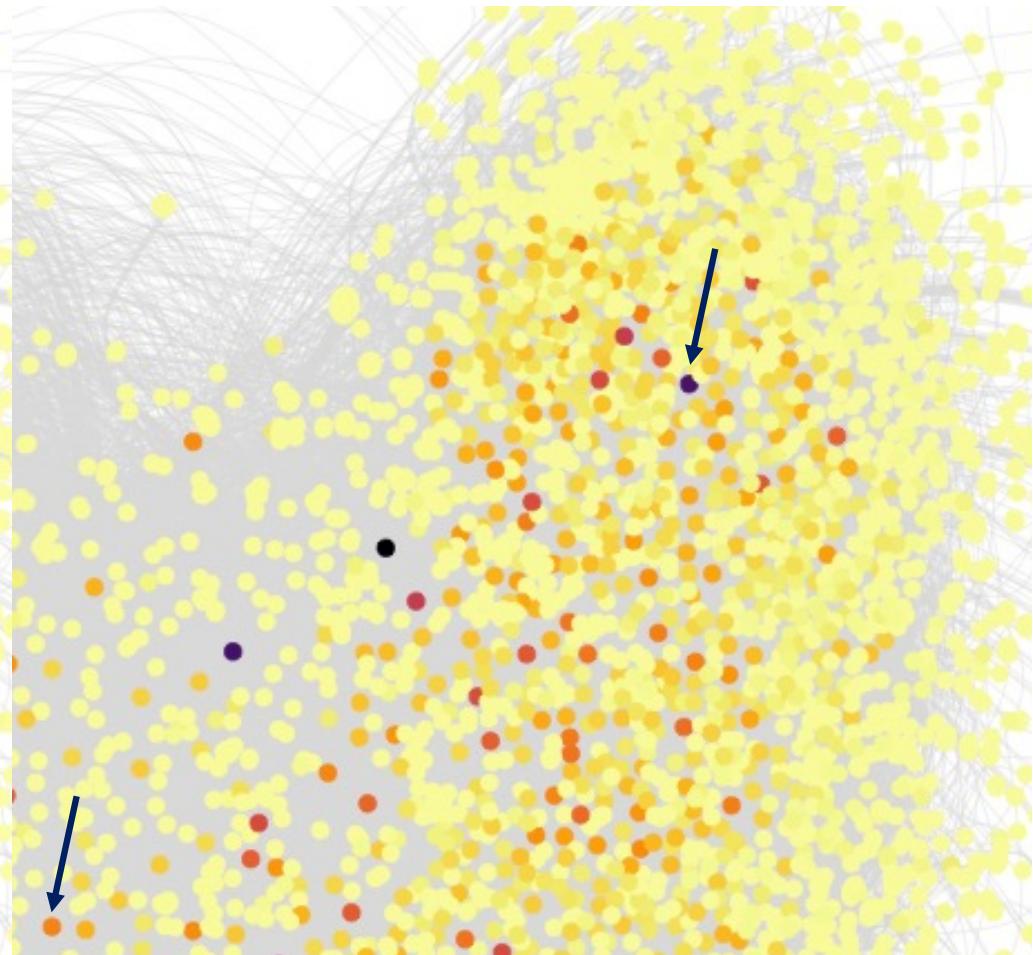
PageRank versus degree authorities

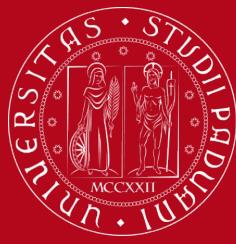
wikipedia administrator elections and vote history data

Degree

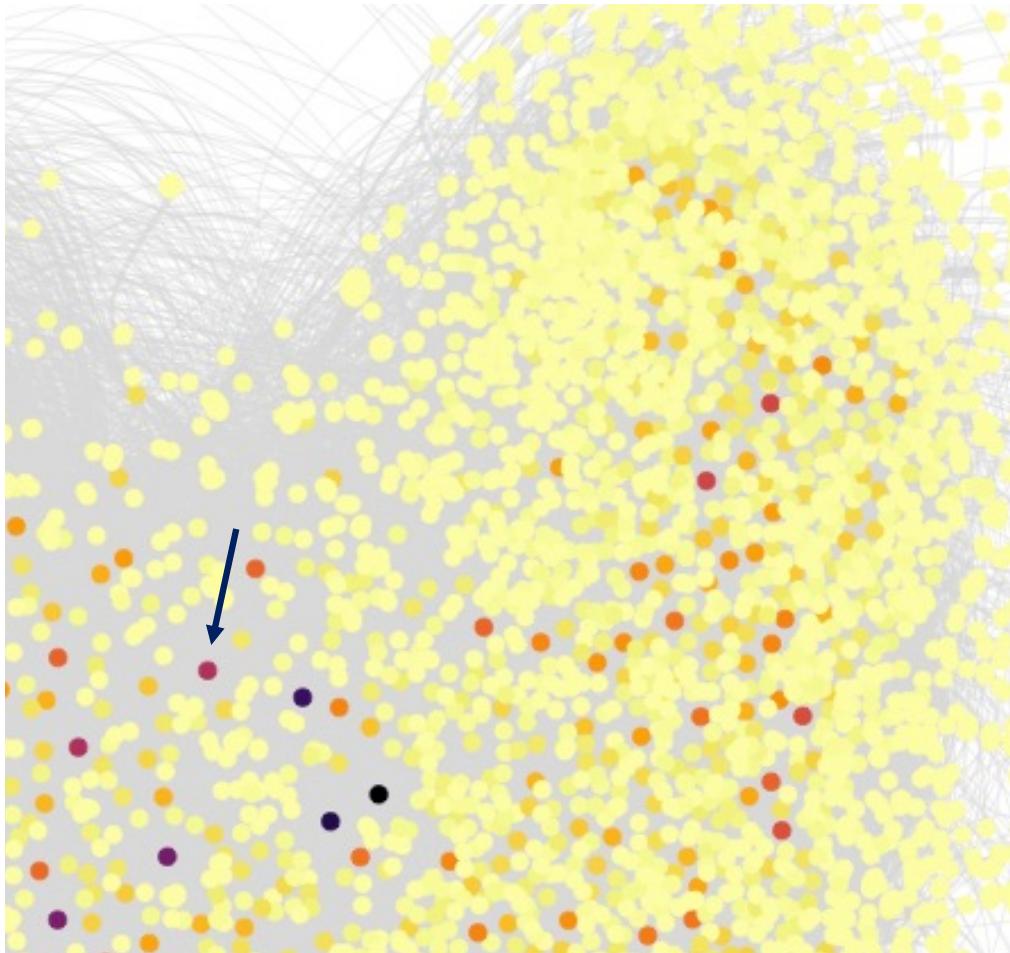


PageRank

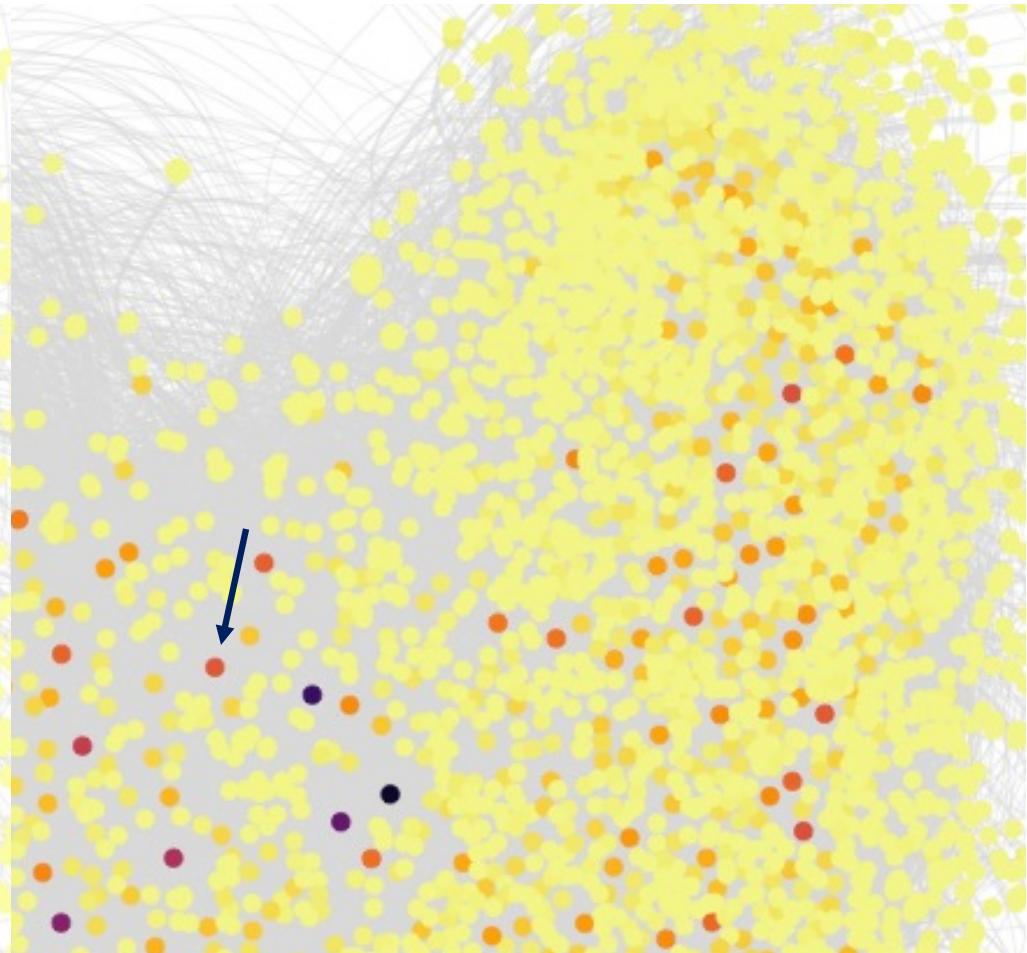




Degree



PageRank



Local PageRank

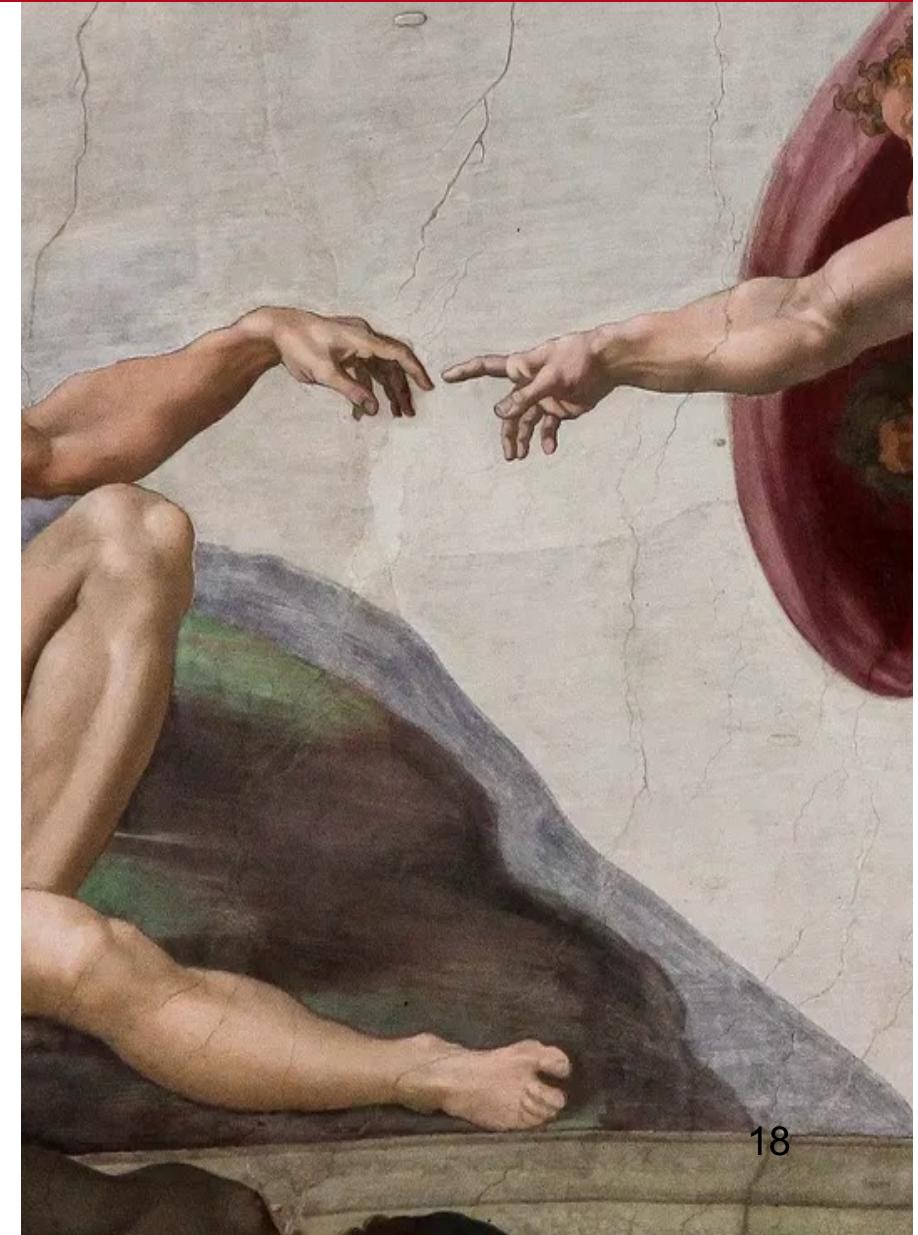
measuring closeness to a node, i.e., friendship

Idea

- Measure **similarity** or closeness to node i by applying PageRank with teleport set *to node i only*

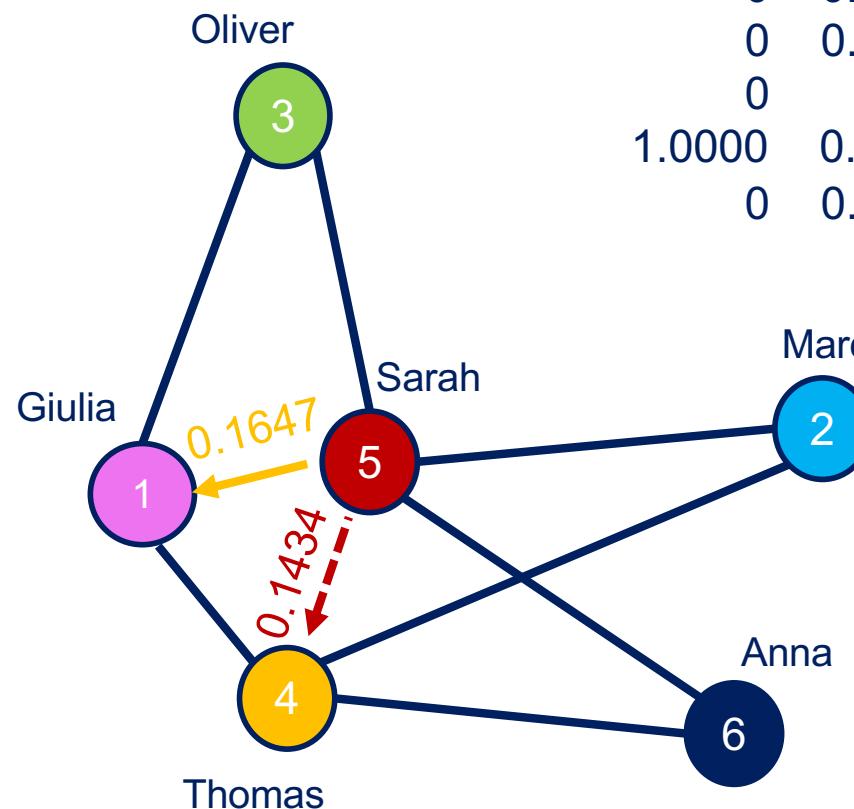
Result

- Measures direct and indirect multiple connections, their quality, degree or weight



Example

who's Sara's best friend? Policy = jump back to Sara

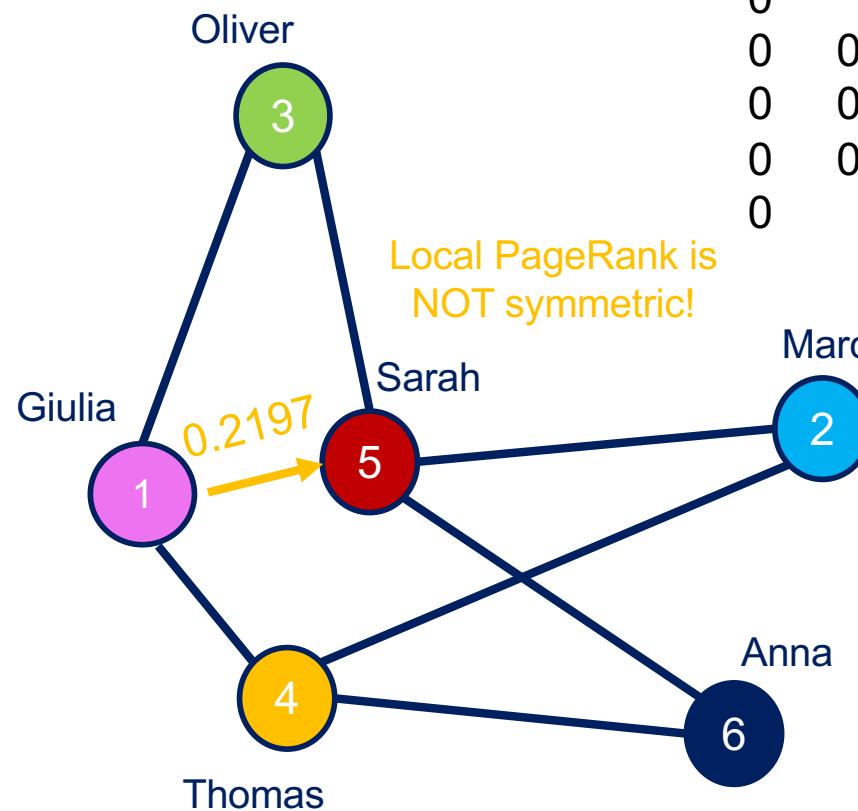


<i>t=1</i>	<i>2</i>	<i>3</i>	<i>4</i>	<i>5</i>
0	0.2125	0.1222	0.2096	0.1290
0	0.2125	0.0319	0.1705	0.0708
0	0.2125	0.0921	0.1369	0.1127
0	0	0.2408	0.0617	0.2043
1.0000	0.1500	0.4811	0.2508	0.4125
0	0.2125	0.0319	0.1705	0.0708

<i>10</i>	<i>20</i>	<i>50</i>	<i>75</i>	<i>100</i>	
0.1743	0.1653	0.1647	0.1647	0.1647	Giulia
0.1238	0.1144	0.1138	0.1138	0.1138	Marc
0.1206	0.1199	0.1199	0.1199	0.1199	Oliver
0.1285	0.1426	0.1434	0.1434	0.1434	Thomas
0.3290	0.3435	0.3444	0.3444	0.3444	Sarah
0.1238	0.1144	0.1138	0.1138	0.1138	Anna

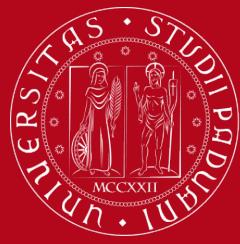
Example

who's Giulia's best friend? Policy = jump back to Giulia

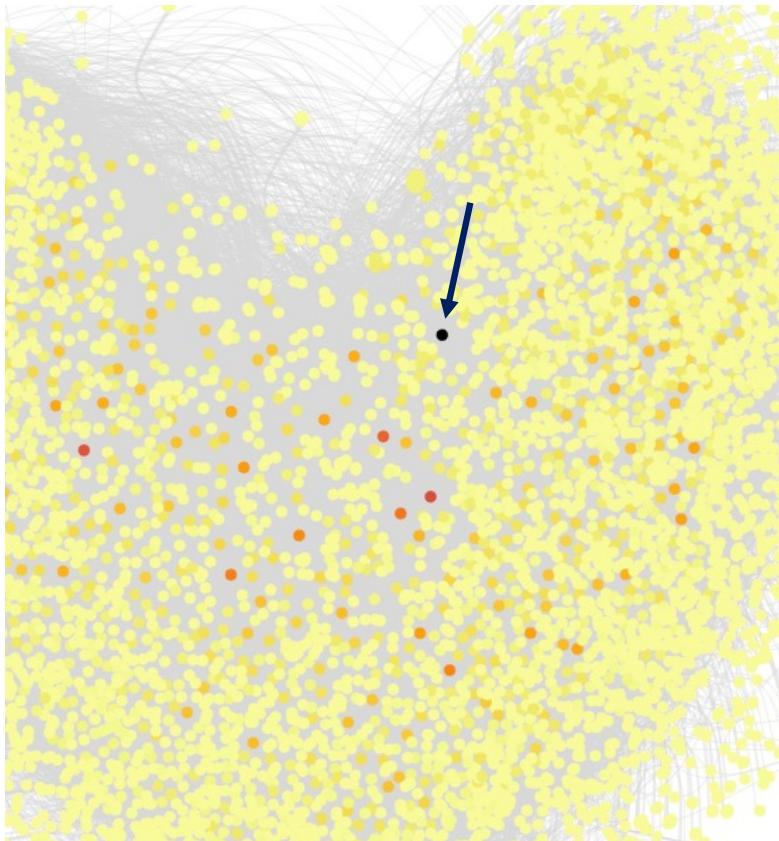


$t=1$	2	3	4	5
1.0000	0.1500	0.4109	0.2403	0.3404
0	0	0.1405	0.0467	0.1262
0	0.2833	0.1027	0.1510	0.1275
0	0.2833	0.0425	0.2358	0.1078
0	0.2833	0.1629	0.2795	0.1719
0	0	0.1405	0.0467	0.1262

10	20	50	75	100	
0.2909	0.2985	0.2989	0.2989	0.2989	Giulia
0.0848	0.0926	0.0931	0.0931	0.0931	Marc
0.1309	0.1313	0.1314	0.1314	0.1314	Oliver
0.1763	0.1645	0.1638	0.1638	0.1638	Thomas
0.2324	0.2204	0.2197	0.2197	0.2197	Sarah
0.0848	0.0926	0.0931	0.0931	0.0931	Anna

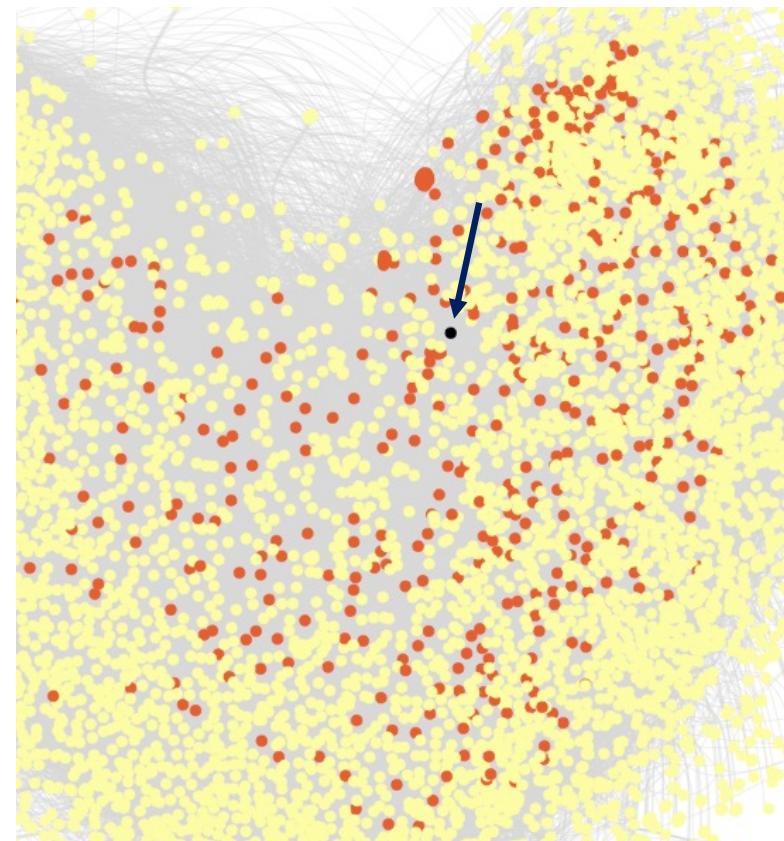


Local PageRank



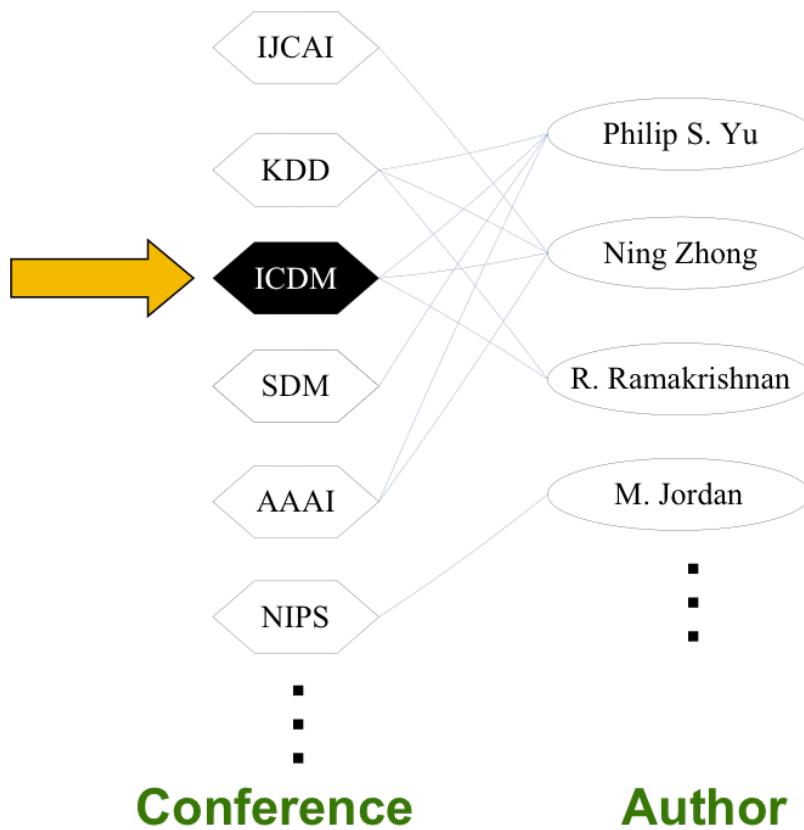
neighbours authority score =
local node → neighbours

1-hop out-neighbours

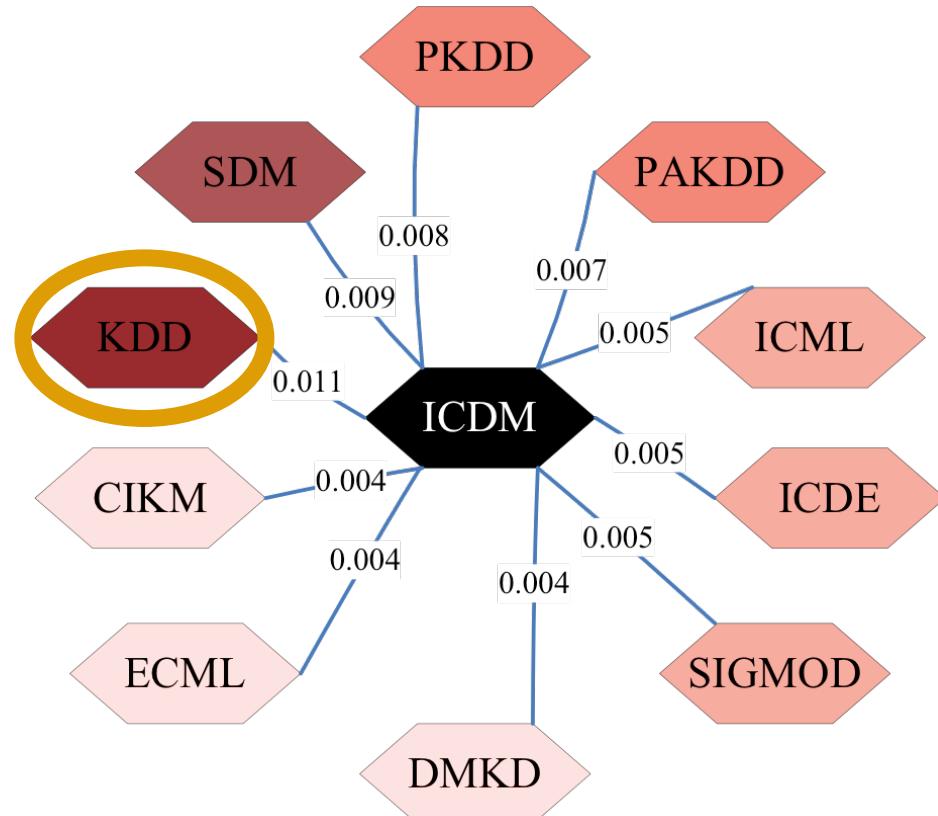


Example

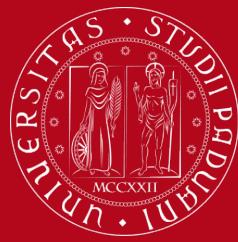
what is the most related conference to ICDM?



Top 10 ranking results



ICDM = international conf. on data mining
KDD = knowledge discovery and data mining

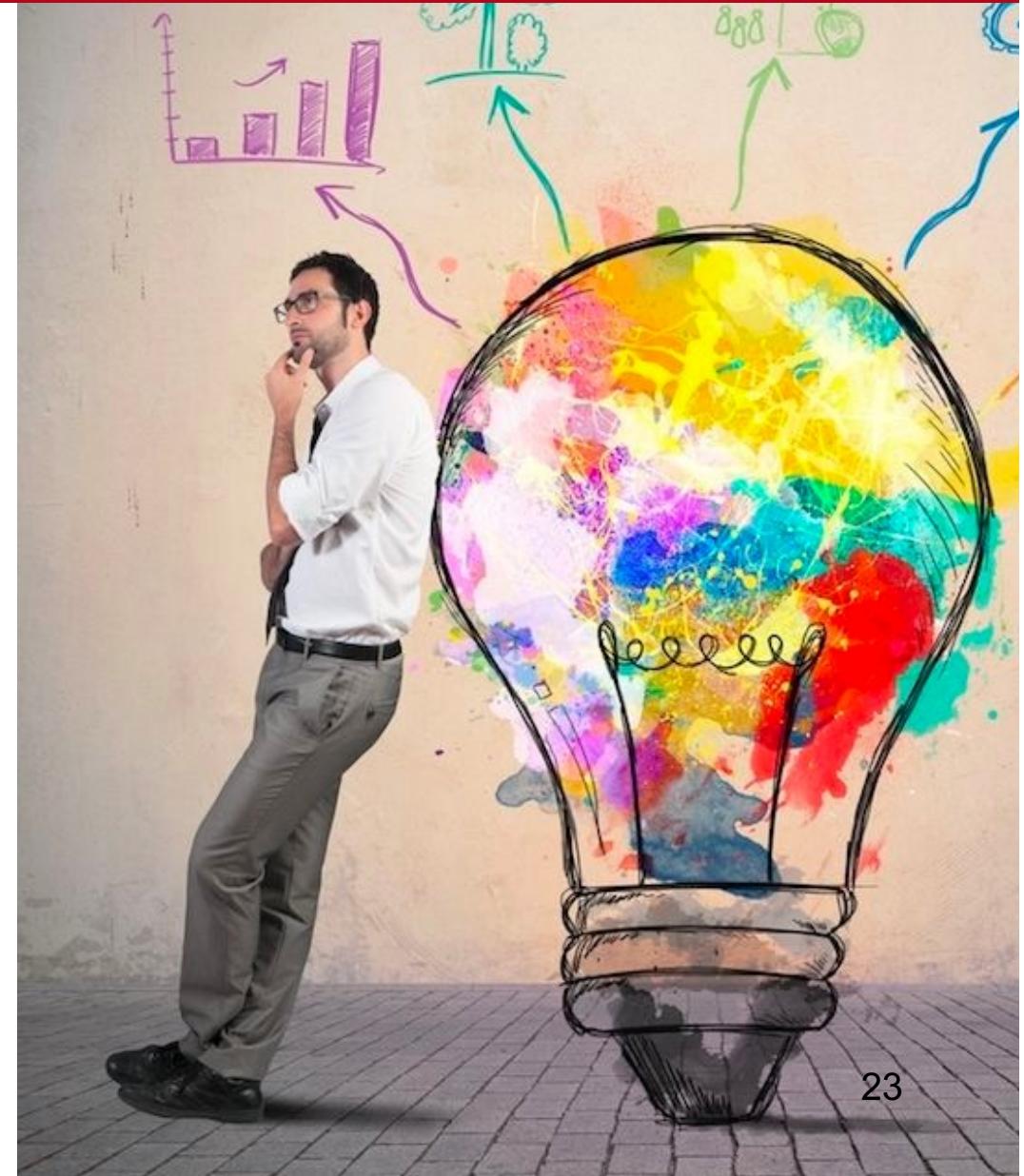


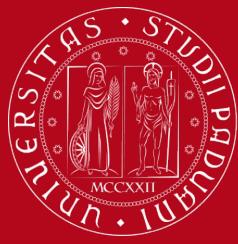
Measuring closeness to a topic

topic specific PageRank

Want to know about a specific topic? **TopicSpecific** PageRank

Policy = jump back, at random, to one of the nodes of the topic





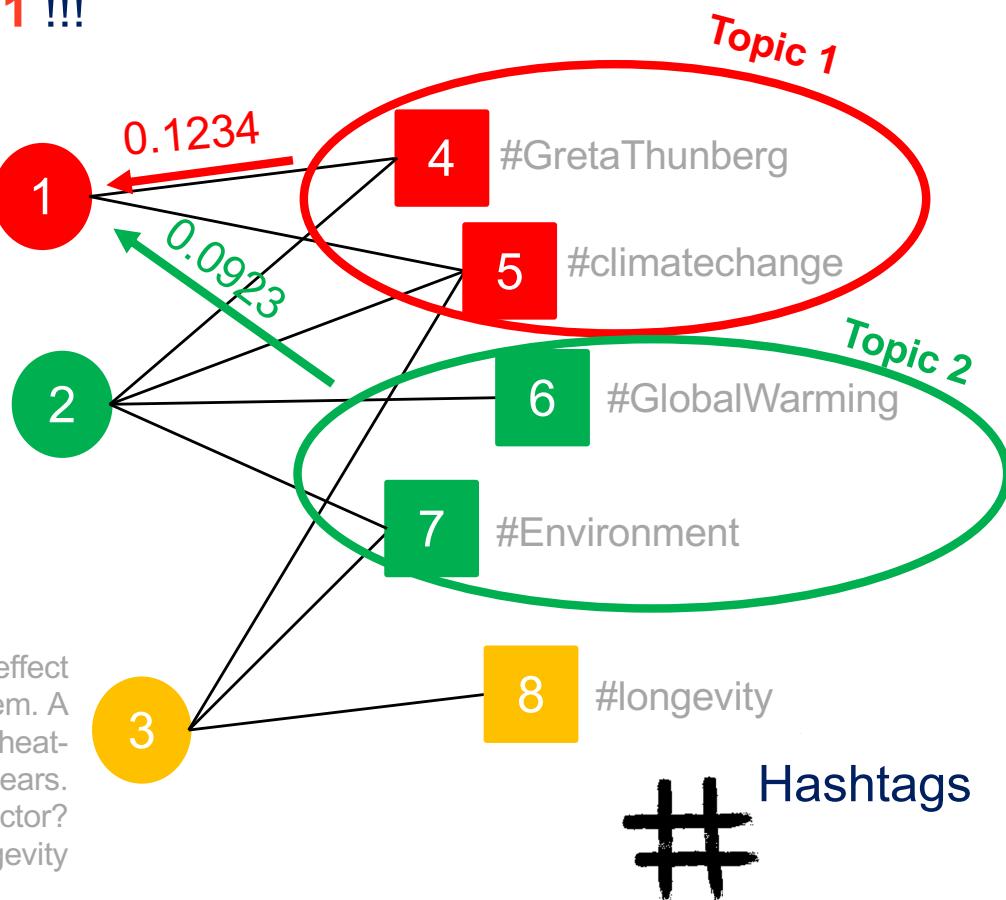
Tweet 1 is assigned to **Topic 1** !!!

those who think they are crazy enough to
change the world eventually do.
#climatechange #ClimateCrisis
#ClimateAction #GretaThunberg #Greta

Hopefully these kids will succeed where
past generations have failed.
#TheResistance #FBR #ClimateChange
#Environment #GlobalWarming
#GretaThunberg

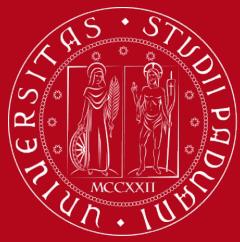
The #environment can have a major effect
on the human cardiovascular system. A
new study has found an increase in heat-
induced #heartattack risk in recent years.
Could #ClimateChange be a risk factor?
#longevity

Tweets



Closeness and Harmonic centralities

importance of nodes as spreaders of information



Closeness centrality

From Wikipedia, the free encyclopedia

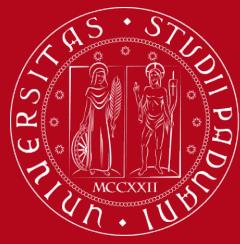
In a [connected graph](#), **closeness centrality** (or **closeness**) of a node is a measure of **centrality** in a [network](#), calculated as the reciprocal of the sum of the length of the [shortest paths](#) between the node and all other nodes in the graph. Thus, the more central a node is, the *closer* it is to all other nodes.

Closeness was defined by Bavelas (1950) as the [reciprocal](#) of the **farness**,^{[1][2]} that is:

$$C(x) = \frac{1}{\sum_y d(y, x)}.$$

where $d(y, x)$ is the [distance](#) between vertices x and y . When

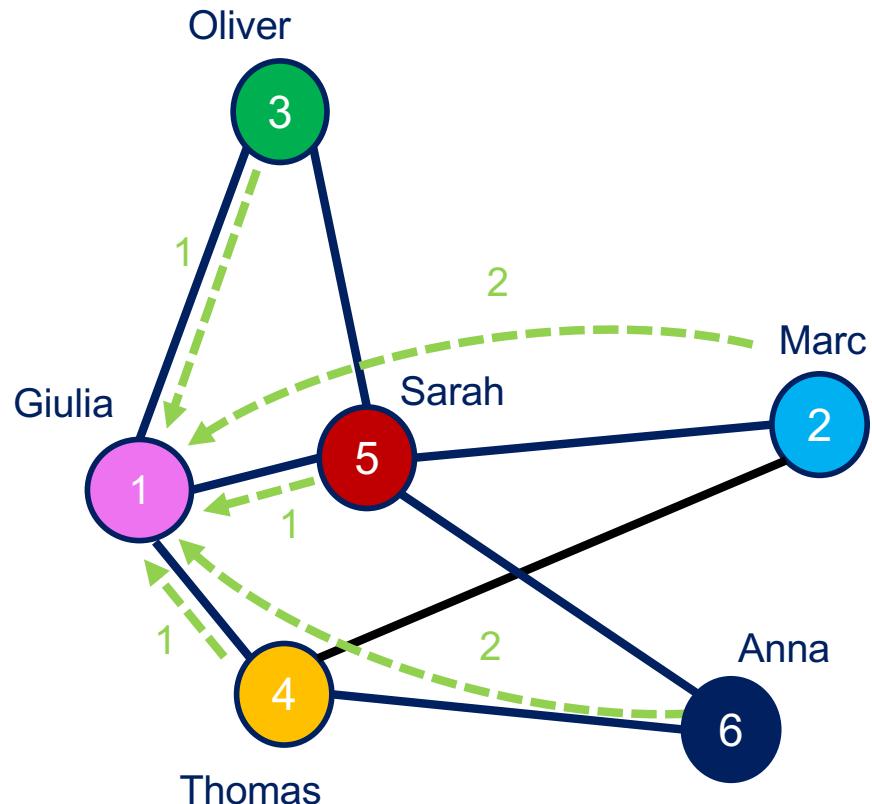
Rationale: the node which is the easiest to reach, the one which is the best for spreading information



An example

on how to calculate closeness centrality

count the lengths of the shortest paths
leading to Giulia
 $1 + 2 + 1 + 2 + 1 = 7$



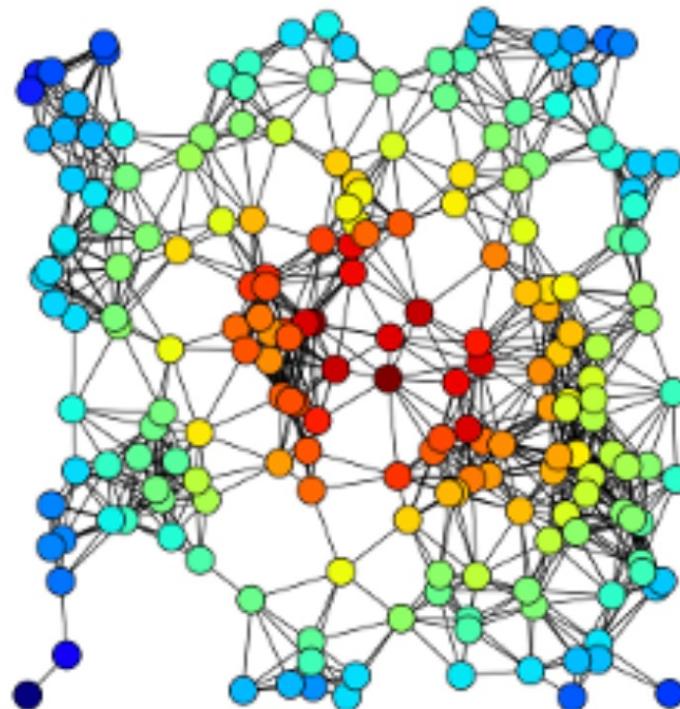
Closeness

0.1429	Giulia
0.1250	Marc
0.1250	Oliver
0.1429	Thomas
0.1667	Sarah
0.1250	Anna

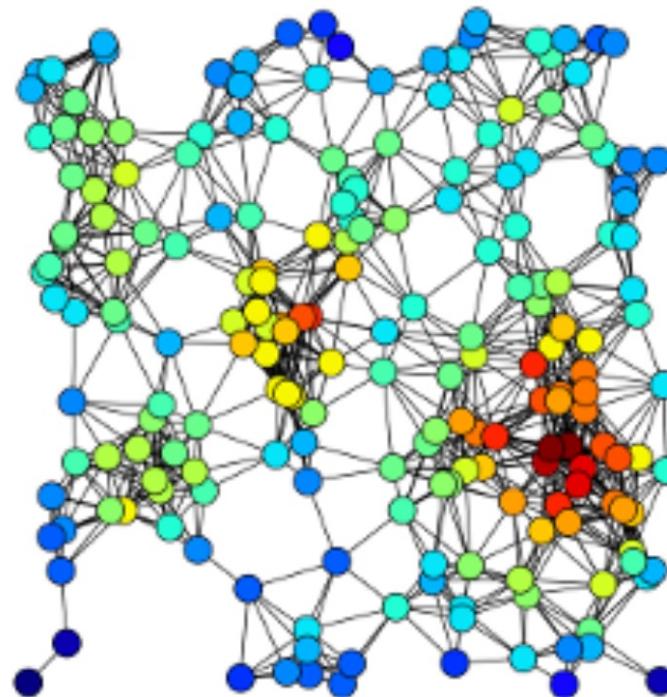
Sarah is the
preferred node for
spreading
information

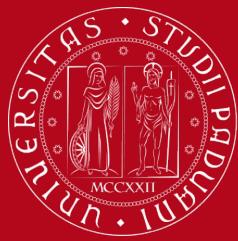
$$C(\text{Giulia}) = 1/7 = 0.1429$$

Closeness



Degree



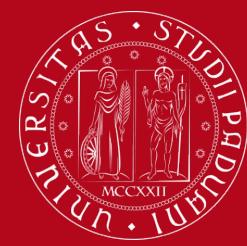


In disconnected graphs [\[edit \]](#)

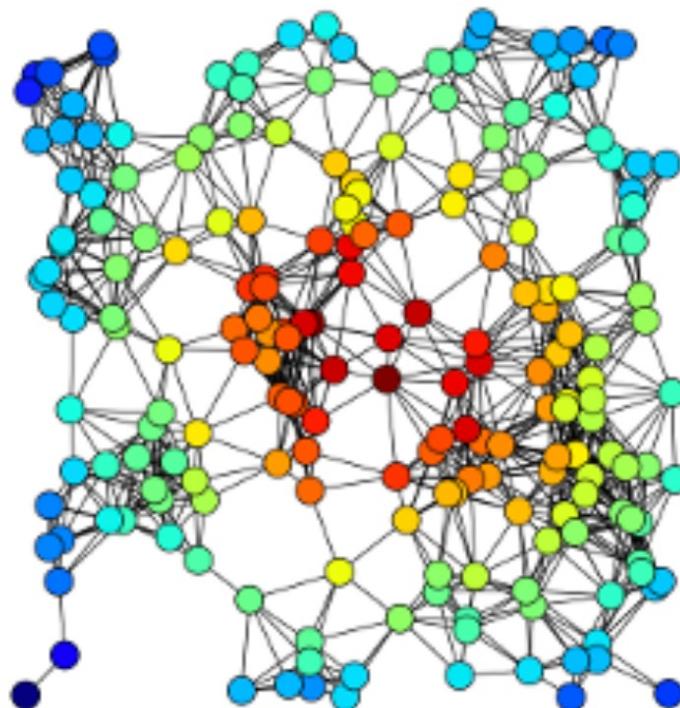
When a graph is not [strongly connected](#), a widespread idea is that of using the sum of reciprocal of distances, instead of the reciprocal of the sum of distances, with the convention $1/\infty = 0$:

$$H(x) = \sum_{y \neq x} \frac{1}{d(y, x)}.$$

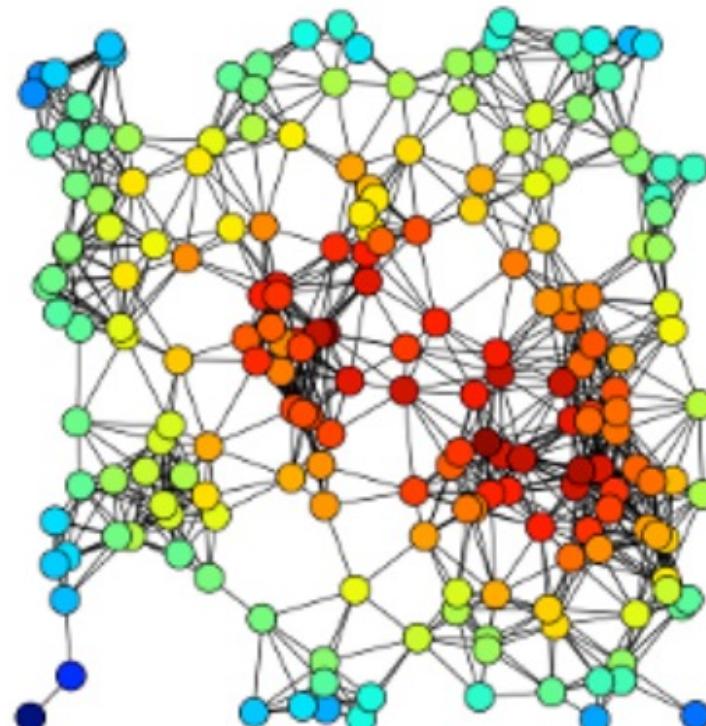
The most natural modification of Bavelas's definition of closeness is following the general principle proposed by [Marchiori](#) and [Latora](#) (2000)^[3] that in graphs with infinite distances the harmonic mean behaves better than the arithmetic mean. Indeed, Bavelas's closeness can be described as the denormalized reciprocal of the [arithmetic mean](#) of distances, whereas harmonic centrality is the denormalized reciprocal of the [harmonic mean](#) of distances.



Closeness

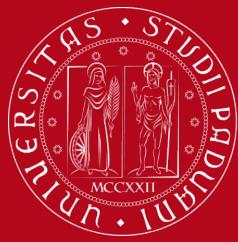


Harmonic



Betweenness centrality

importance of nodes as bridges or brokers



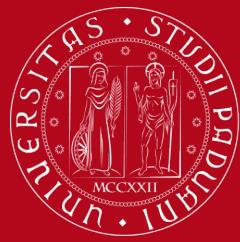
Betweenness centrality

From Wikipedia, the free encyclopedia

In graph theory, **betweenness centrality** is a measure of **centrality** in a graph based on **shortest paths**. For every pair of vertices in a connected graph, there exists at least one shortest path between the vertices such that either the number of edges that the path passes through (for unweighted graphs) or the sum of the weights of the edges (for weighted graphs) is minimized. The betweenness centrality for each **vertex** is the number of these shortest paths that pass through the vertex.

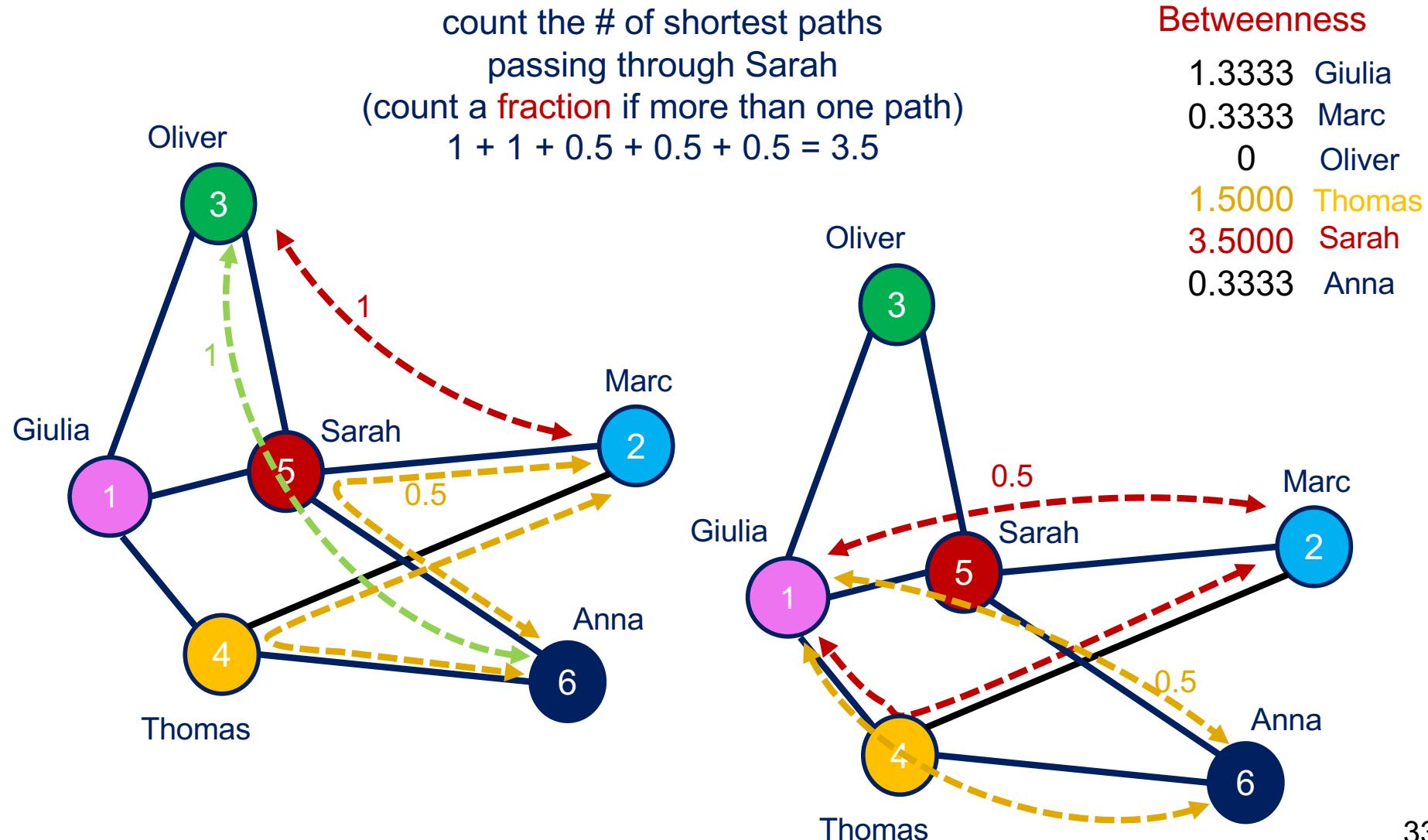
Betweenness centrality was devised as a general measure of centrality:^[1] it applies to a wide range of problems in network theory, including problems related to social **networks**, biology, transport and scientific cooperation. Although earlier authors have intuitively described centrality as based on betweenness, **Freeman (1977)** gave the first formal definition of betweenness centrality.

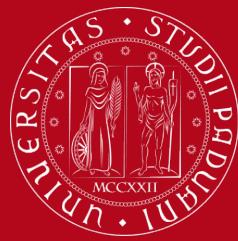
Rationale: the node which takes you elsewhere (bridge, broker)



An example

on how to calculate betweenness centrality

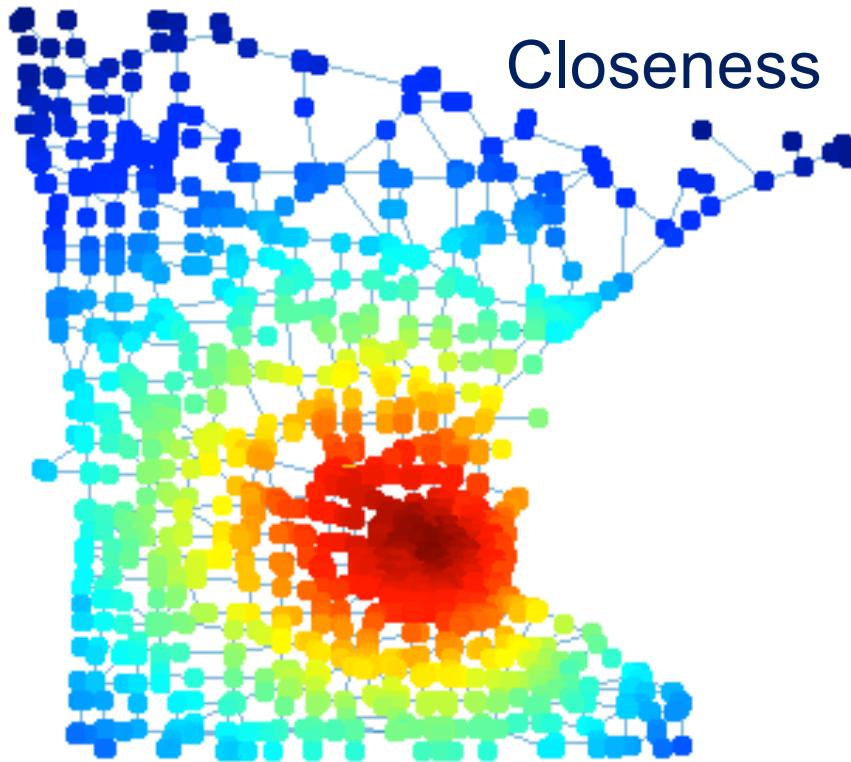




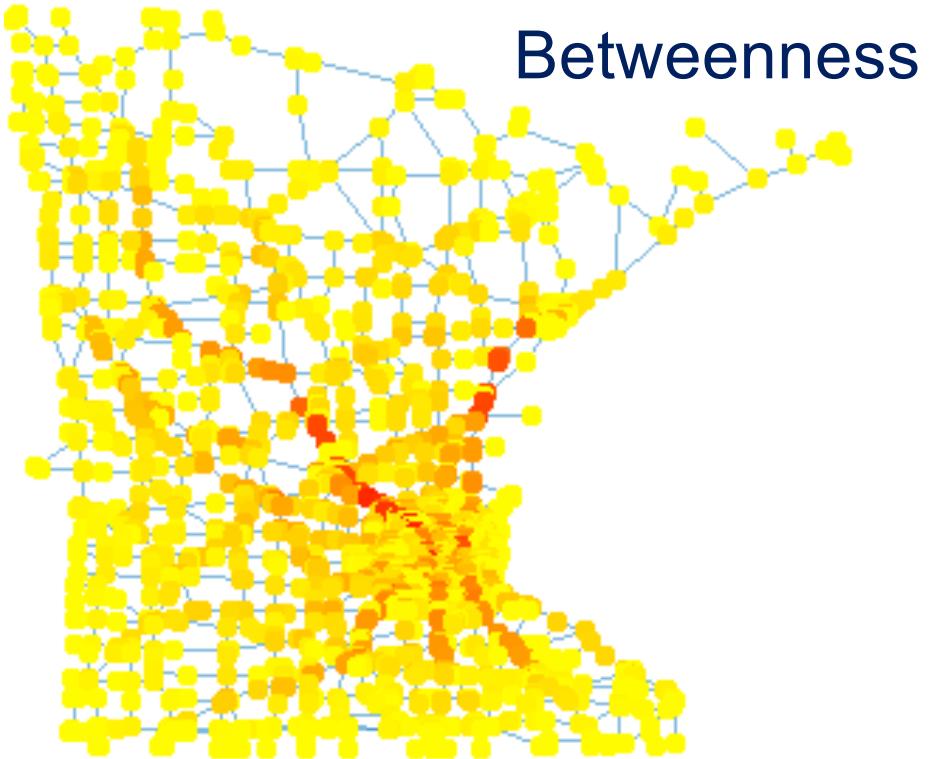
Closeness vs betweenness centrality

a graphical interpretation

Minnesota road network

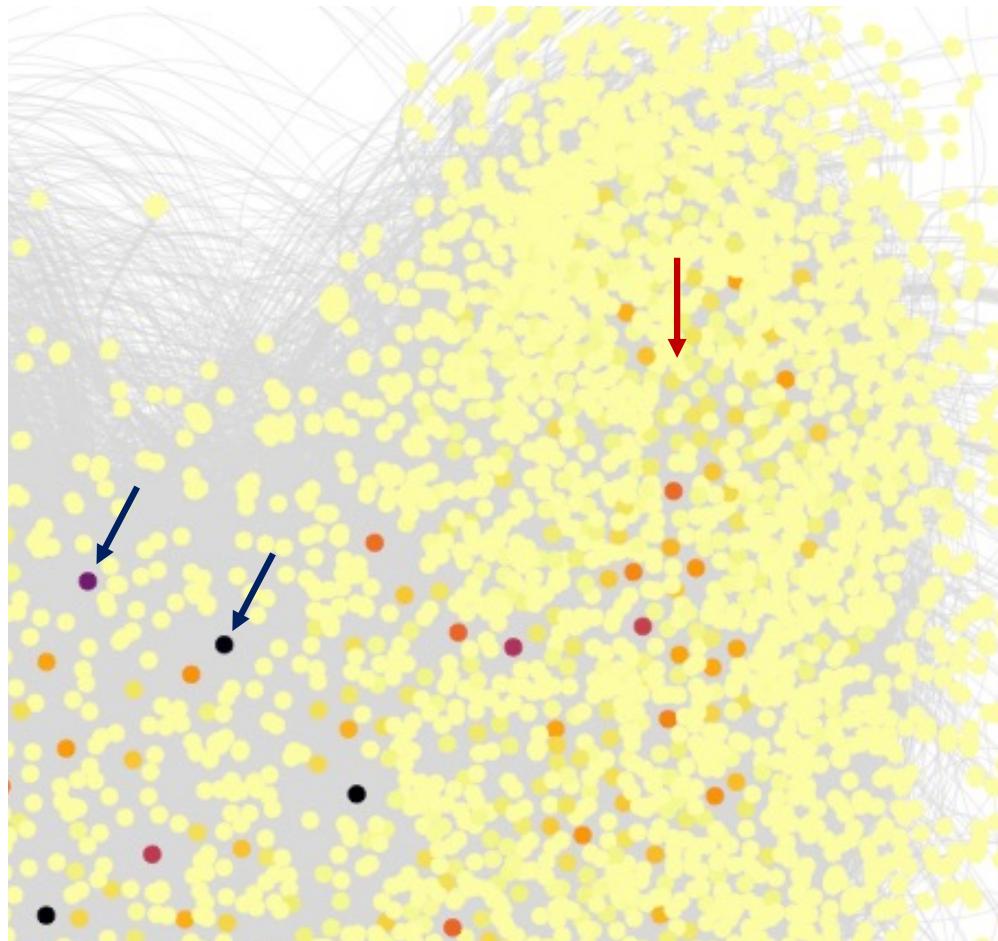


Closeness is a measure of **center of gravity** (best node to spread info)

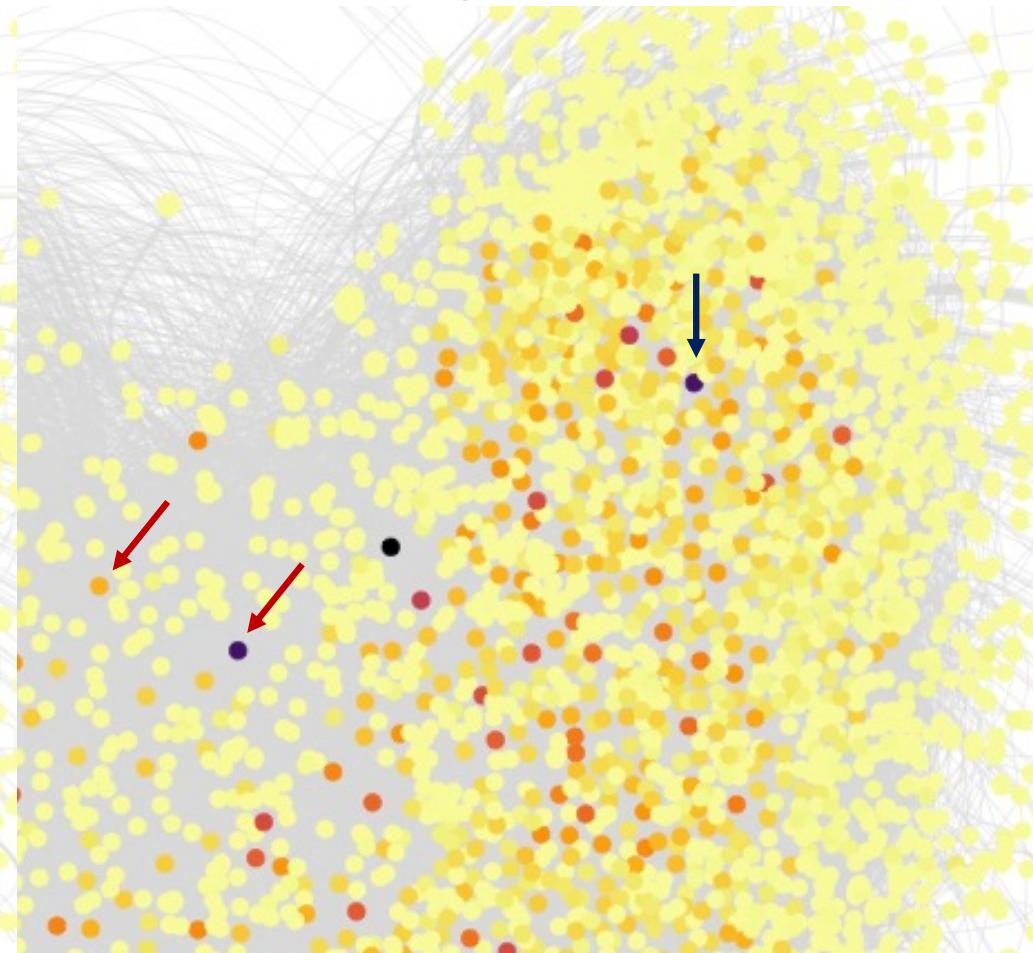


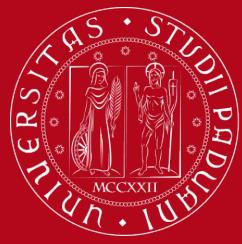
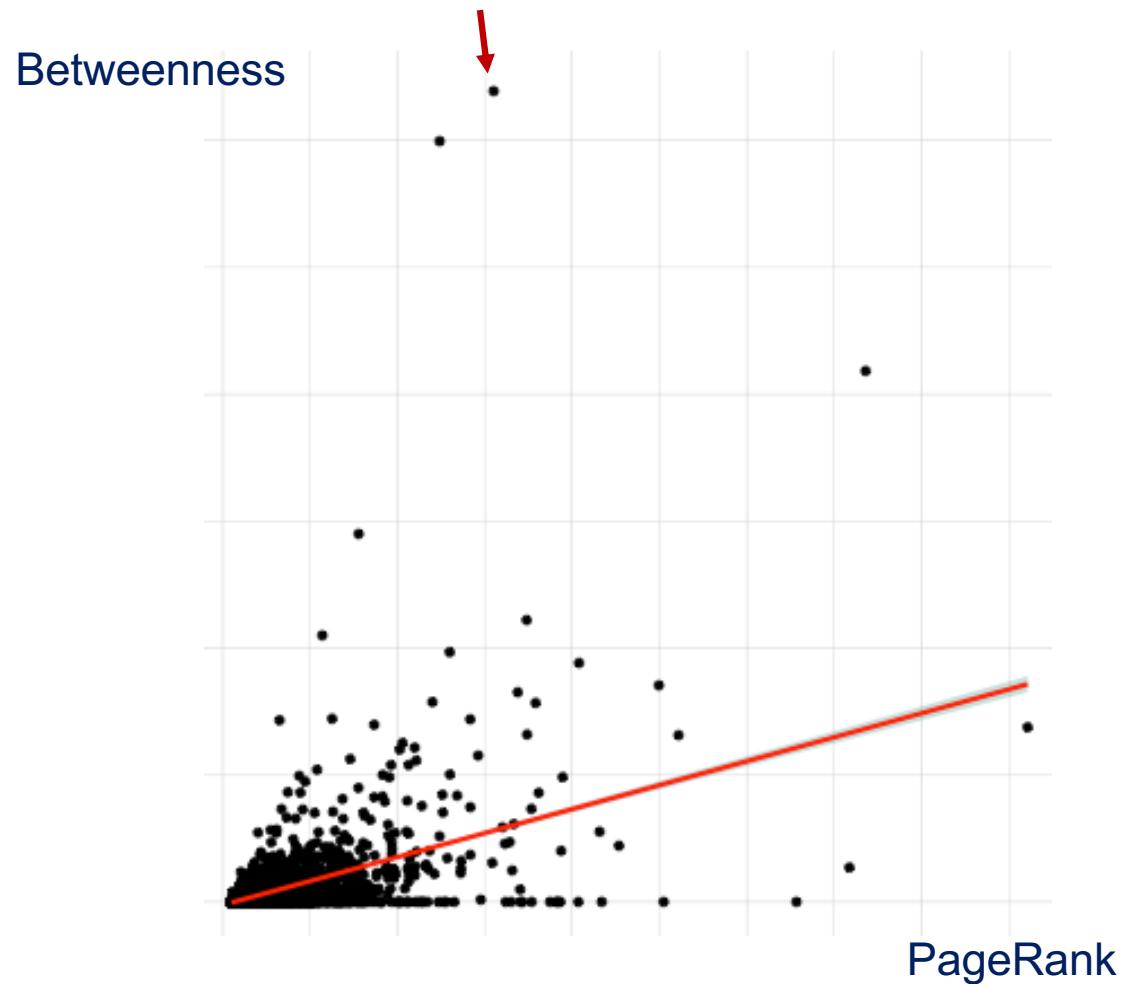
Betweenness is a measure of **brokerage** (i.e., being a bridge)

Betweenness



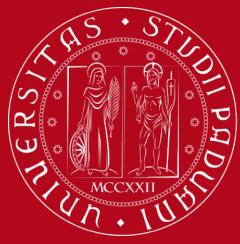
PageRank





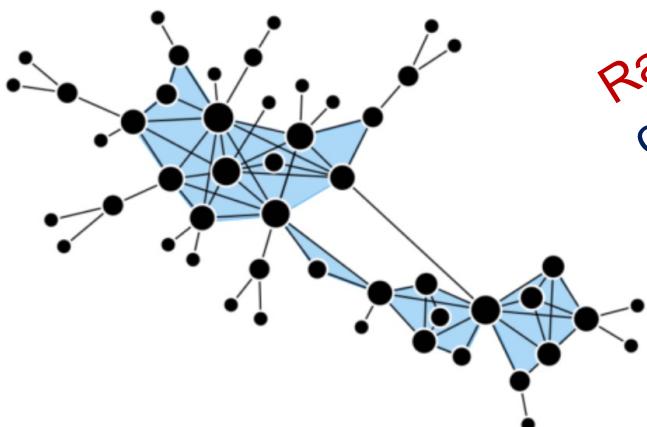
Clustering coefficient

how tightly linked is the network locally

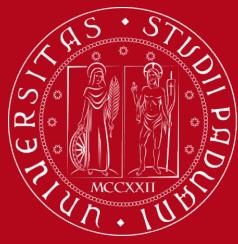


Local clustering coefficient [\[edit \]](#)

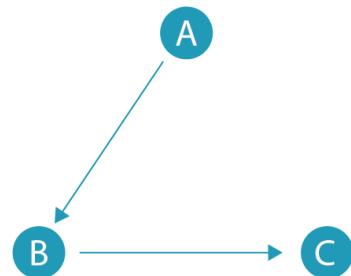
The **local clustering coefficient** of a [vertex](#) (node) in a [graph](#) quantifies how close its [neighbours](#) are to being a [clique](#) (complete graph). [Duncan J. Watts](#) and [Steven Strogatz](#) introduced the measure in 1998 to determine whether a graph is a [small-world network](#).



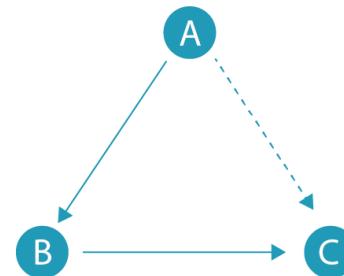
Rationale: how strongly connected is the network locally / general indication of the graph's tendency to be organized into clusters



Forbidden triad

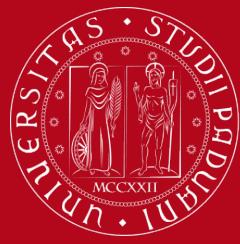
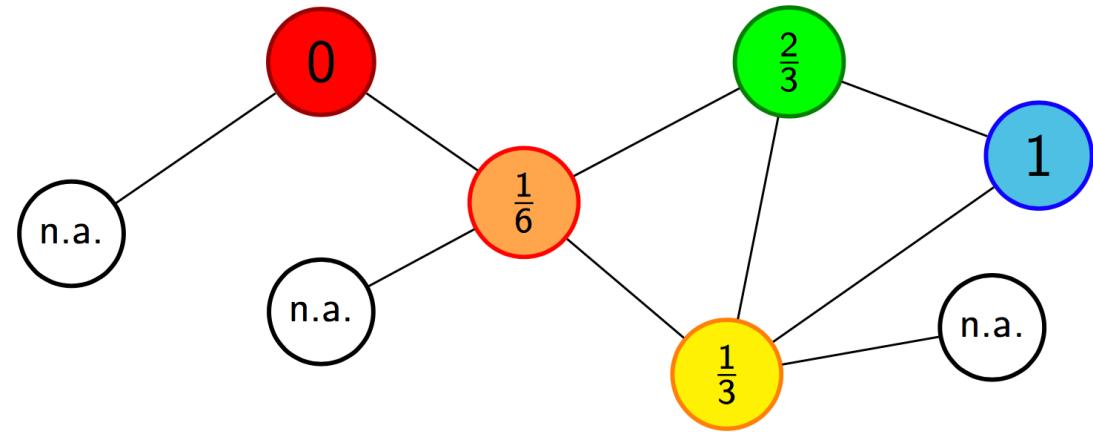


Triadic closure
(A and C are likely to be friends)



Triadic closure

- ❑ A and C are likely to have the opportunity to meet because they have a common friend B
- ❑ The fact that A and C are friends with B gives them the basis of **trusting** each other
- ❑ B may have the **incentive** to bring A and C together, as it may be hard for B to maintain disjoint relationships

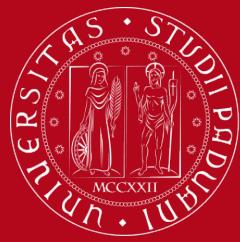


Local Clustering coefficient C_i counts the fraction of pairs of neighbours N_i which form a triadic closure with node i

$$C_i = \frac{1}{|\mathcal{N}_i|(|\mathcal{N}_i| - 1)} \sum_{\substack{(j, k) \in \mathcal{N}_i^2 \\ i \neq k}} tc_{i,j,k}$$

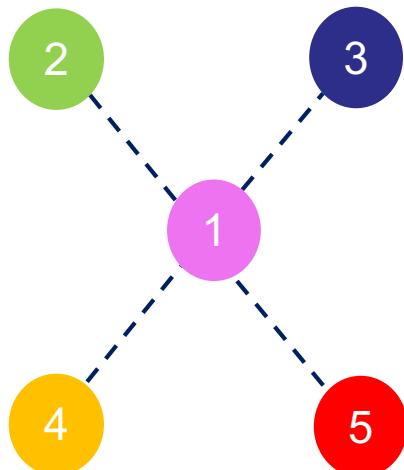
equal to $\text{diag}(\mathbf{A}^3)$

where $tc_{ijk} = 1$ if the triplet (i, j, k) forms a triadic closure, and zero otherwise



not connected
neighbourhood

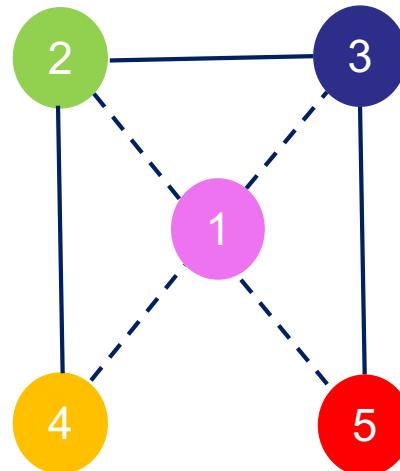
$$\langle C \rangle = 0$$



$$C_1 = 0$$

weakly connected
neighbourhood

$$\langle C \rangle = 0.766$$



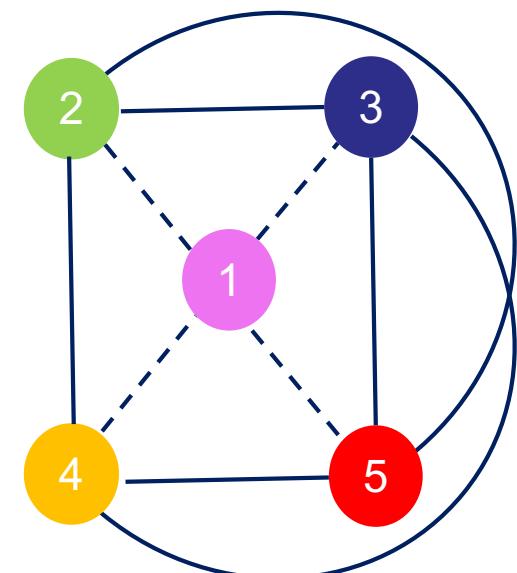
$$C_1 = \frac{1}{2} = 3 / (4 \times 3/2)$$

$$C_2 = C_3 = \frac{2}{3}$$

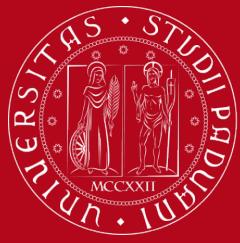
$$C_4 = C_5 = 1$$

strongly connected
neighbourhood

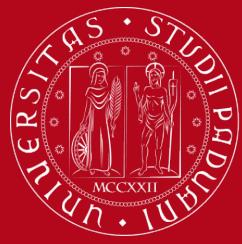
$$\langle C \rangle = 1$$



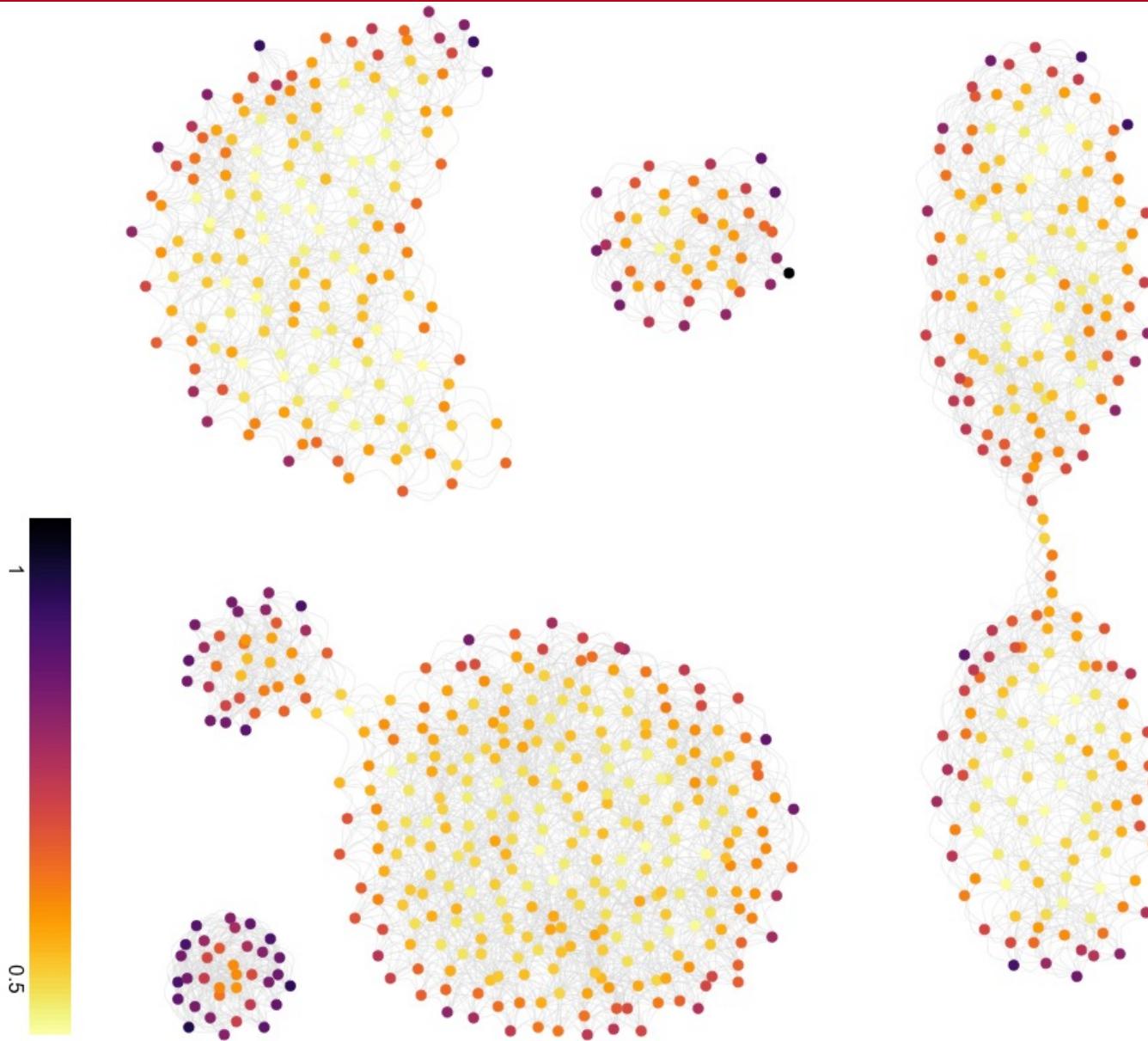
$$C_1 = 1 = 6 / (4 \times 3/2)$$



But clustering coefficient is generally hard to see and visual interpretation is considered unreliable



Visual example



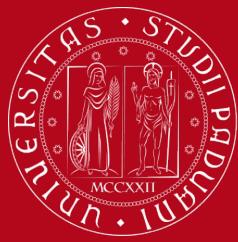
Wrap-up

on centrality measures

- ❑ Closeness, betweenness and clustering coefficient are **alternative** centrality measures that have a different view wrt PageRank
- ❑ They provide **useful insights** especially in social networks, as they are linked to sociology concepts
- ❑ Closeness and betweenness are based on distances, that require algorithms that are **less scalable** than PageRank
- ❑ Exploit their potential at your best



Centrality measure	Technical property	Meaning
Degree (in/out)	Measures number (and quality) of connections	Cohesion Entrepreneurship
PageRank (authorities/hubs)	Measures number (and quality) of direct and indirect connections	Cohesion Entrepreneurship Closeness/Similarity/Friendship (with a direction) Dependence
Closeness	Measures length of min paths	Visual centrality Significant spreading points Outliers
Betweenness	Measures number of min paths	Brokerage Structural holes Ostracism
Clustering coeff.	Measures number of triadic closures	Centrality in a community Cohesion of the neighbourhood



Visual analysis

Overall organisation
Clusters (highly connected)
Sparse areas (less connected)
Cliques and strongly connected components
Disconnected components
Center/Periphery

