Materials Properties, Use and Conservation: Construction Materials and Binders

Calcic binders

Michele Secco

Binders classification

Table 3.6. Main classes of binding compounds produced by pyrotechnology.							
Starting reactive material	Production process	Material-water mixture	Final product	Mineral phases in the hardened aged material			
		Slaked lime (lime putty)	Lime plaster	Calcite			
	Calcinations of limestone	Slaked lime + fine aggregate	Lime mortar	Calcite + aggregate			
Lime-plaster (quicklime)		Slaked lime + fine aggregate + pozzolan	Hydraulic mortar (Roman opus caementitium)	Calcite, zeolites, C-S-H + aggregate			
	Calcination of dolomite	Slaked magnesia-lime	Dolomitic or magnesian plaster	Calcite, brucite, periclase			
Gypsum-plaster (plaster of	Coloination of average	Bassanite (± anhydrite)	Gypsum plaster	Gypsum			
Paris)	Calcination of gypsum	Bassanite + fine aggregate	Gypsum mortar	Gypsum + aggregate			
		Portland cement paste	Portland cement	Portlandite, C-S-H, calcite			
		Portland cement paste + fine aggregate	Portland cement mortar	Portlandite, C-S-H, calcite + aggregate			
Portland-clinker	Calcinations of limestones+clay	Portland cement paste + fine and coarse aggregate	Concrete	Portlandite, C-S-H, calcite + aggregate			
		Cement paste + fine aggregate + pozzolan	Pozzolanic Portland cement mortar	Portlandite, C-S-H, calcite, Ca-aluminosilicates			

CENTRO PER I Beni culturali

DIPARTIMENTO CIRCE

CENTRO PER I Beni culturali

DIAGNOSTICA . RILIEVO . TECNOLOGIE

Materials Properties, Use and Conservation:

Construction Materials and Binders

UNIVERSITÀ DEGLI STUDI

DI PADOVA

DIPARTIMENTO CIRCE

DI GEOSCIENZE

Figure 14. Geographical distribution of lime plaster and gypsum plaster in the Pre-Pottery Neolithic.

CENTRO PER I Beni culturali

DIAGNOSTICA . RILIEVO . TECNOLOGIE

DIPARTIMENTO CIRCE

dei Leganti Idraulici

DI GEOSCIENZE

W. David Kingery, Pamela B. Vandiver, Martha Prickett

The Beginnings of Pyrotechnology, Part II: Production and Use of Lime and Gypsum Plaster in the Pre-Pottery Neolithic near East Journal of Field Archaeology, Vol. 15, No. 2, pp. 219-244

Materials Properties, Use and Conservation: Construction Materials and Binders

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

Fig. 1: Faces 1, 2, and 3, left to right (J. Tsantes, Smithsonian Institution).

THREE LATE EIGHTH MILLENNIUM PLASTERED FACES FROM 'AIN GHAZAL, JORDAN

DIPARTIMENTO CIRCE

P.S. GRIFFIN, C.A. GRISSOM and G.O. ROLLEFSON

UNIVERSITÀ

DI PADOVA

Materials Properties, Use and Conservation: Construction Materials and Binders

p. 59 - 70

Paléorient, Année 1998, Volume 24, Numéro 1

CENTRO PER I BENI CULTURALI

AGNOSTICA RILIEVO TECNOLOGU

Yiftahel (Israel) 7000 b.C.

DIPARTIMENTO CIRCE

dBC

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

CENTRO PER I BENI CUI TURAL

GNOSTICA . RILIEVO . TECNOLOGI

Lepenski Vir, right bank of Danube, Serbia Lepenski Vir culture, 5600 b.C.

Periodic table of the elements

				Alkali m	netals		📃 Ha	alogens										
q	aroup			Alkaline	e-earth	metals	Noble gases											
Deric	Ŭ1*			Transiti	on met	als	📃 Ra	Rare-earth elements (21, 39, 57–71) 18										
4	1			Other metals				and lanthanoid elements (57–71 only) 2										2
4	Н	2		Other n	onmet	ale		rtinoid (te			13	14	15	16	17	He
3 4			onnou	10								6	7	8	9	10		
2	Li	Be											В	С	Ν	0	F	Ne
3	11	12											13	14	15	16	17	18
5	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	CI	Ar
Л	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
-	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
J	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
6	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
0	Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
7	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
ł	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
	lonthar	noid cor	rios 6	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
Ce Pr Nd			Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu					
	activ	noid sor	rios 7	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
actinoid series 7			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		

RO PER I

*Numbering system adopted by the International Union of Pure and Applied Chemistry (IUPAC).

© Encyclopædia Britannica, Inc.

UNIVERSITÀ

DI PADOVA

Calcium Atom Diagram

CENTRO PER I Beni cui turai

R

DIAGNOSTICA . RILIEVO . TECNOLOGI

CENTRO PER I BENI CUITURALI

DIAGNOSTICA . RILIEVO . TECNOLOGIE

UNIVERSITÀ OBC

DEGLI STUDI

DI PADOVA

DIPARTIMENTO CIRCE

Materials Properties, Use and Conservation: **Construction Materials and Binders**

2 cm

ENTRO PER I

CalcinationCaCO3(calcite) + heat \rightarrow CaO(quicklime) +CO2(carbon dioxide) $\Delta G^{\circ}_{r} \approx 177.1 (kJ/mol) (25 °C) \rightarrow 848 °C$

Prissé-la-Charrière, Niort, Francia, 200 b.C - 70 AD

Several ancient lime-kilns have been excavated from Roman (Dix 1982, Coulson et al. 1986), to Late Classic Maya (Abrams and Freter 1996), to more recent times (Williams 2004). An accurate description of lime burning operations in Roman times are supplied by Marcus Porcius Cato (Cato the Elder: On agriculture, XXXVIII).

An illustration of the lime kiln at Crypta Balbi. From Manacorda 2001, p. 52.

Hoi Han Wan, Hong Kong (600-900 AD)

Former lime making industry, in which shells and corals were baked to form lime

Ruins of old lime kiln at the south Cool-Cave Valley deposit on the east side of State Highway 49. Photo by Mary R. Hill.

Cool-Cave Valley, California (1880-1930)

DI PADOVA

TRO PER I

Limekilns Aberthaw, Barry Island, South Wales (1888 – 1926) UNIVERSITÀ OBC

DIPARTIMENTO CIRCE

- The temperature to produce CaO must be above 898 °C, though the decomposition reaction of the carbonate can proceed also at slightly lower temperatures (780-800 °C) in reducing conditions.
- Operational temperatures of lime-kilns are in the range 920-1000 °C in order to speed up the decarbonation reaction.
- Excessive temperatures are avoided because they produce unreactive "dead-burned" lime.

CENTRO PER I Beni culturali

DIAGNOSTICA . RILIEVO . TECNOLOGIE

Construction Materials and Binders

ale di Ricerca

Materiali Cementizi dei Leganti Idraulici

CENTRO PER I BENI CIJITURALI

DIAGNOSTICA . RILIEVO . TECNOLOGIE

CENTRO PER I Beni culturali

DIAGNOSTICA . RILIEVO . TECNOLOGIE

dBC

DIPARTIMENTO DI GEOSCIENZE CIRCE DI GEOSCIENZE

li Cementizi anti Idraulici

CENTRO PER I Beni culturali

DIAGNOSTICA . RILIEVO . TECNOLOGIE

Lime Kiln as it may bave looked when in use

In ancient times production was carried out on a batch basis with each cycle averaging 15 days. The cycle is as follows:

- •3 days for loading (4 persons required);
- •3 days for calcining;
- •4 days for cooling;
- •3 days for discharging;
- •1 day for cleaning the kiln.

CENTRO PER I Beni culturali

timentale di Ricerca Materiali Cementizi dei Leganti Idraulici DIAGNOSTICA . RILIEVO . TECNOLOGIE

Università degli Studi

DI PADOVA

CENTRO PER I BENI CUITURAL

DIAGNOSTICA . RILIEVO . TECNOLOGIE

Rodriguez-Navarro et al. (2009)

DIPARTIMENTO CIRCE

CENTRO PER I BENI CUI TURALI

RILIEVO . TECNOLOGIE

CENTRO PER I Beni culturali

DIAGNOSTICA . RILIEVO . TECNOLOGIE

Università degli Studi

DI PADOVA

dBC

DIPARTIMENTO DI GEOSCIENZE Centro Interdipa per lo Studio de

•The quality of the binder depends on a variety of parameters, including the composition, porosity and impurity content of the fired limestone, the maximum temperature and the time-temperature path of the firing, and the conditions of slaking.

• The starting limestone should have a non carbonate mineral content (usually silicates and clays) lower than 5-10 wt %, and the carbonate should be pure calcium.

ENTRO PER I Eni culturali

$\begin{array}{l} Slaking \\ CaO(quicklime) + H_2O \rightarrow Ca(OH)_2(slaked \\ lime - portlandite) + heat \end{array}$

 $\Delta G_{r}^{\circ} \approx -57.9 \text{ (kJ/mol)}$

DIPARTIMENTO CIRCE

CENTRO PER I Beni culturali

AGNOSTICA . RILIEVO

• The fired blocks are ground to obtain the fine **powdered quicklime**, which however is rather unstable in normal humidity conditions and tends to hydrate to portlandite (calcium hydroxide, $Ca(OH)_2$).

• If the CaO powder is mixed with an **exact** (i.e stoichiometric) amount of water (lime/water = 75.7/24.3 = 3.12 by weight) the product is fine dry powder and the process is called *dry hydration*, because there is just the right amount of water to produce portlandite.

 If the CaO powder is mixed with excess water then a smooth paste is obtained in a slurry form, and the process id referred to as *lime slaking*.

• The portlandite paste (*slaked lime* or *lime putty*) can then be used as a binder and an architectural component (filler, adhesive, cracks sealer, floor consolidant, surface smoother, etc.) or as a raw material for modelling objects, vessels, and even artwork.

Materials Properties, Use and Conservation:

Construction Materials and Binders

DIPARTIMENTO CIRCE DI GEOSCIENZE

DIPARTIMENTO DI GEOSCIENZE CIRCE DI GEOSCIENZE

• In early Roman times there was the widespread belief that aging of the slaked lime was crucial to the quality of the plaster.

• Vitruvius (*De architectura*, Book VII) had realized the importance of properly mixing the lime with a hoe to ensure good homogeneity and above all slaking for a sufficient time in pits.

• Similarly, **Plinius** (*Naturalis Historia*, Book V) claimed that lime putty needed to mature for at least three years to produce a good binder. Long homogeneous mixing and aging definitely helped in producing a slaked compound with a very fine grain size and little porosity, and this is one of the "secrets" of the excellent quality of Roman mortars, which are still astonishingly solid and hard.

DI PADOVA

DELL' ARCHITETTURA
D I
M. VITRUVIO POLLIONE
RESTITUTI NELL'IVALIANA LINGUA
DA BALDASSARRE ORSINI
PROFESSORE DELLE BELLE - ARTI SOCIO GNORARIO DELL' ACCADEMIA CLEMENTINA DELLE BELLE - ARTI DELL'INSTITUTO DI BOLOGNA È DELLA BEALE ACCADEMIA DELLE BELLE - ARTI DI FIRENZE INRUSCO DI CORTONA ROZZO DI SIENA SOCIO QNORARIO DELLA FATRIA ACCADEMIA DI BELLE - LETTERE ED ARTI E DIRETTORE DELL'ACCADEMIA DEL DISEGNO IN PERUGIA E S.
TOMO II.
A fabris, et ab idiotis patiatus accipere se consillo. For. I. VI. C. uir.
TAX BIDDITAL
Difficient 1 0 h B 1 al
Con le devute licenza.
LIBRO SETTIMO
Prefizione
Cano L. Dello smalto
Capo II Della macerazione della ralcina per
iarte d'intenachi
Cana III Beel' intentchi delle volte a delle
vapo III. Degi inconacite acite voite, e acite
Para IV De'nulimenti de'Iuaghi umidi 🔅 🛁
Cane V. Dalle manime di disingana salla tising 20
Capo VI. Dell' apparecchio del marmo per lo
stucco 86

Portlandite crystal structure

CENTRO PER I BENI CUITURAL

DIAGNOSTICA . RILIEVO . TECNOLOGII

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

Cazalla et al. (2000)

ENTRO PER I

$\begin{array}{l} Setting \\ Ca(OH)_2(\text{slaked lime}) + CO_2(\text{carbon} \\ \text{dioxide}) \rightarrow CaCO_3(\text{calcite}) + H_2O + \text{heat} \end{array}$

Solubility Ca(OH)₂: 1.73 g/L (Solubility NaCI: 360 g/L)

Slaked lime poorly soluble!

Release of hydroxyl ions during Ca(OH)₂ dissolution

$$\begin{array}{l} \textbf{Reaction paths}\\ CO_{2(g)} \leftrightarrow CO_{2(aq)};\\ \textbf{Rate-controlling step}\\ \hline CO_{2(aq)} + OH^{-}_{(aq)} \leftrightarrow HCO_{3}^{-}_{(aq)};\\ \hline \textbf{Instantaneous reaction}\\ \hline HCO_{3}^{-(aq)} + OH^{-}_{(aq)} \leftrightarrow CO_{3}^{2-}_{(aq)} + H_{2}O_{(l)};\\ \end{array}$$

$$\operatorname{Ca}^{2+}_{(aq)} + \operatorname{CO}_{3}^{2-}_{(aq)} \leftrightarrow \operatorname{CaCO}_{3(s)}.$$

CENTRO PER I Beni culturali

DIAGNOSTICA . RILIEVO .

Progression of carbonation

DIPARTIMENTO CIRCE

Step 1. Fresh mortar: porous network, pores saturated with mixing water. Drying

stone

Step 2. Fresh mortar: porous network, pores with an adsorbed layer of water. Atmospheric CO_2 access and dissolution in the water

ENTRO PER I

DIAGNOSTICA . RILIEVO . TECNOLOGIE

Step 3. First stages of the carbonation: advance of the front of carbonation

Crystallization sequences

Amorphous calcium CaCO₃ metastable polymorphs carbonate (AAC) (aragonite, vaterite)

DIAGNOSTICA . RILIEVO . TECNO

DIPARTIMENTO CIRCE

DI PADOVA

Rodriguez-Navarro et al. (2016) Materials Properties, Use and Conservation: Construction Materials and Binders

Crystallization sequences

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

Layers of carbonate ions and Ca²⁺ ions in octahedral coordination

DIPARTIMENTO CIRCE

dBC

UNIVERSITÀ

DI PADOVA

CENTRO PER I

DIAGNOSTICA . RILIEVO . TECNOLOGI

CENTRO PER I Beni culturali

DIPARTIMENTO DI GEOSCIENZE Centro Interdipar. per lo Studio dei B timentale di Ricerca Materiali Cementizi dei Leganti Idraulici DIAGNOSTICA . RILIEVO . TECNOLOGIE

Compressive strength of lime

dei Leganti Idraulici

DIAGNOSTICA . RILIEVO . TECNOLOGIE

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

Materials Properties, Use and Conservation: Construction Materials and Binders

THANK YOU FOR YOUR ATTENTION!

