Materials Properties, Use and Conservation: Construction Materials and Binders

Analytical techniques for provenance determination of ancient volcanic pozzolans

Simone Dilaria

Volcanic pozzolans and geological origin

Pozzolanic aggregates

DIAGNOSTICA RILIEVO TECNOLOGU

dBC

DIPARTIMENTO CIRCE

UNIVERSITÀ

DI PADOVA

Pozzolanic reaction

Volcanic pozzolans

Volcanic pozzolans consist of <u>volcanic rocks having a quasi-eminently pyroclastic</u> <u>origin (produced by explosive volcanic activities)</u> and having high concentrations of silica and active aluminia in amorphous or poorly crystalline rocks Therefore they are potentially reactive with lime in mortars: they ecompass many pyroclastic products with abundant volcanic glass, such as <u>pumice, volcanic ash</u>, <u>tephra, perlites and obsidians, poorly lithified tuffs and ignimbrites, and breccias</u>

Volcanic pozzolans

Pumice

Highly vesicular roughtextured volcanic glass

Scoria

Vesicular, dark-colored volcanic rock usually feebly-to-moderately silica undersaturated.

Tuffs

Volcanic ashes, scoria, pumices other volcanic products and lithified after sedimentation into a rock

Lithified tuff outcrop (Phlegraean Fields, Naples)

Materials Properties, Use and Conservation: **Construction Materials and Binders**

Unlithified pumice outcrop (Phlegraean Fields, Naples)

Volcanic pozzolans

Obsidian and perlites

<u>Obsidian</u> is a natural glass formed by the rapid cooling of extremely silica-rich magmas (about 65 to 80%), having a very low in water content. <u>Perlite</u> is an amorphous volcanic glass, very rich in SiO_{2} , having a high-water content, typically formed by the hydration of obsidian.

Eploitation of volcanic pozzolans in antiquity

Uses of volcanic pozzolans in antiquity

DIPARTIMENTO CIRCE

In the coating mortars of Punic Pantelleria cisterns (4th-3rd cent. B.C.) use of local volcanic pozzolans (Cuddia Rossa) for the production of waterproof and hydraulic mortars.

→ Volcanic pozzolans were not "discovered" by the Romans

CENTRO PER I BENI CUI TURAL

DIAGNOSTICA . RILIEVO . TECNOLOGIE

Shön *et alii 2011;* Shön 2012

Vitruvian volcanic pozzolans

Harenae fossiciae (Colli Albani)

(Volcanic scoriaceous cinerites)

In caementiciis autem structuris primum est de harena quaerendum, ut ea sit idonea ad materiem miscendam neque habeat terram commixtam. genera **autem** *harenae fossiciae sunt haec, nigra, cana, rubra, carbunculus.*

In buildings of rubble work it is of the first importance that the sand be fit for mixing with the lime, and unalloyed with earth. The different sorts are these; black, white, deep red, and bright red.

Vitr. *De arch*. 2.5.1

recentes autem fossiciae cum in structuris tantas habeant virtutes, eae in tectorio ideo non sunt utiles quod pinguitudine eius calx palea commixta propter vehementiam non potest sine rimis inarescere.

Though pit sand (*harenae fossiciae*) is excellent for mortar, it is unfit for plastering; for being of such a rich quality, when added to the lime and straw, its great strength does not suffer it to dry without cracks.

Vitr. *De arch*. 2.5.3

DIPARTIMENTO CIRCE

BENI CULTURALI

DIAGNOSTICA . RILIEVO . TECNOLOGIE

antale di Ricerca

dei Leganti Idraulici

DI GEOSCIENZE

DEGLI STUDI

DI PADOVA

CENTRO PER I Beni cuiturai

RILIEVO TECNOLOGU

DIAGNOSTICA

Black Pozzolan 407k.a. BP

Pozzolanelle

366k.a. BP

= Vitruvian *nigra* ?

UNIVERSITÀ

DEGLI STU

DI PADOVA

Red Pozzolan 475k.a. BP

DIPARTIMENTO CIRCE

Vitruvian *rubra* + *nigra (?)*According to Jackson 2007

Fig. 3. Stratigraphy and sample locations of Castel di Leva (CDL) section. PR: Pozzolane Rosse; PN: Pozzolane Nere; PL: Pozzolanelle.

The Origins of Concrete Construction in Roman Architecture

> Technology and Society in Republican Italy

> > Marcello Mogetta

DIPARTIMENTO CIRCE

DI GEOSCIENZE

ale di Ricerca

i Materiali Cementizi dei Leganti Idraulici DIAGNOSTICA . RILIEVO . TECNOLOGIE

CENTRO PER I Beni culturali

1 mm

Da Jackson et al. 2007 Materials Properties, Use and Conservation: Construction Materials and Binders

CENTRO PER I

DIAGNOSTICA . RILIEVO . TECNOLOGIE

Hadrian Mausoleum (2nd c. CE), nowadays Castel Sant'Angelo in Rome

Materials Properties, Use and Conservation: Construction Materials and Binders

DIPARTIMENTO CIRCE

Est etiam genus pulveris quod efficit naturaliter res admirandas. <u>Nascitur in regionibus Baiais in</u> <u>agris municipiorum quae sunt circa Vesuvium</u> montem.

Vitr. 2.6.1

There is also a kind of powder that naturally makes things amazing. It grows in the regions of Baiani and in the fields of the municipalities around Mount Vesuvius.

Phlegraean fields eruptions (Late Pleistocene 40 k.a. BP – present)

dei Leganti Idraulici

DIAGNOSTICA , RILIEVO , TECNOLOGIE

DI PADOVA

Construction Materials and Binders

CENTRO PER I Beni culturali

DIAGNOSTICA , RILIEVO , TECNOLOGIE

Somma-Vesuvius eruptions (Late Pleistocene 40 k.a. BP - present)

Somma-Vesuvius

UNIV DEGLI DI PA

DIPARTIMENTO CIRCE

DI GEOSCIENZE

CENTRO PER I

Vitruvio, *De arch.*, V, 12, 2-3. Eae autem structurae, quae in aqua sunt futurae, videntur sic esse faciendae, uti portetur pulvis a regionibus quae sunt a Cumis continuatae ad promontorium Minervae [...]. Deinde tunc in eo loco, qui definitus erit. arcae stipitibus robusteis et catenis inclusae demittendae destinandaeque aquam in firmiter: deinde inter eas ex transtillis inferior pars sub aqua exequenda et purganda, et mixta caementis ex mortario materia (quemadmodum supra scriptum est) ibi congerendum, donicum compleatur structurae spatium, quod fuerit inter arcas.

The structures to be made in the water, it seems to me, should be done in this manner. Let the dust be transported from those reasons which extend from Cumae to the promontory of Minerva [...]. In the place that will be established, let the closed arches be dropped into the water and connected validly with strong poles and chains: moreover inside those by means of rafts purge and level the lower part under the water, and then throw in cement matter mixed with lime (as was said above), until that space of structure that there is between the arches is filled.

DI PADOV/

DIPARTIMENTO CIRCE

CENTRO PER I Beni culturali

DIAGNOSTICA . RILIEVO . TECNOLOGIE

DIPARTIMENTO CIRCE

DI GEOSCIENZE

ntale di Ricerca

Materiali Cementizi dei Leganti Idraulici

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

CENTRO PER I Beni culturali

DIAGNOSTICA . RILIEVO . TECNOLOGIE

Thermae of Baia, Gulf of Naples

Analisi: Rispoli et al. 2019 Materials Properties, Use and Conservation: Construction Materials and Binders

DIAGNOSTICA RILIEVO TECNOLOGU

...Commixtum cum calce et caemento non modo ceteris aedificiis praestat firmitatem, sed etiam moles, quae struuntur in mari, sub aqua solidescunt (Vitr. 2.6.1)

The mixture with lime and cement <u>not only guarantees stability</u> to the rest of the buildings, but also solidifies the masses that are built in the sea under water.

DIPARTIMENTO CIRCE

JNIVERSITÀ

DI PADOVA

Trajan Age (2nd c. CE)

CIBA CENTRO PER I BENI CULTURALI

DIAGNOSTICA , RILIEVO , TECNOLOGIE

Volcanic pozzolans diffusion (Imperial era)

CENTRO PER I BENI CUITURAL

DIAGNOSTICA . RILIEVO . TECNOLOGIE

BC

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

DIPARTIMENTO CIRCE

Materiali Cementizi dei Leganti Idraulici

DI GEOSCIENZE

Volcanic pozzolans diffusion (Imperial era)

DIAGNOSTICA RILIEVO TECNOLOGU

NIVERSITÀ

DI PADOVA

DIPARTIMENTO CIRCE

Alternative volcanic pozzolans

Region	Site	Function	Cronology	Rock type	References
Etruria	Vulci e Vulsinii	structural	Republican Age	Pyroclastic rocks (Vulsinii, Latera)	Marra, D'Ambrosio 2013;D'Ambrosio et al. 2015;
Pantelleria	-	Cistern revetments	4th-3rd c. BC	Volc. Scorias (Cuddia Rossa/Bruciata)	Schön et al. 2012; Schön 2014, 203-212
Pantelleria	Scauri	Plasters	4th c. AD	Volcanic scoria (Cuddia rossa)	Montana et al. 2013
Sardinia	Nora	Structural	1st c. BC	Perlites and obsidians (Mt. Arci)	Columbu et al. 2019
Germany	Koln	Structural	2nd c. AD	Tuff (Rhineland Trass)	Lamprecht 1984, 46-49; Wang, Althaus 1994
Asia Minor	Sagalassos	Structural	Imperial age	Differentiated volcanics (Lake Golcuk)	Callebaut et al. 2000; Degryse et al. 2002
Asia Minor	Nysa and Aigai	Structural	Imperial Age	Differentiated volcanics (Dikili-Çandarlı)	Uğurlu Sağın, Engin Duran, Böke 2021

Euganean Hills

Trachyte / Latite
breccias

CIBA CENTRO PER I BENI CULTURAL

Analytical techniques for provenance determination

Optical microscopy

CENTRO PER I Beni culturali

DIAGNOSTICA . RILIEVO . TECNOLOGIE

ntale di Ricerc

ei Materiali Cementizi e dei Leganti Idraulici

Optical microscopy

- **Geochemistry** is the science that uses the <u>tools and principles of chemistry to</u> <u>explain the mechanisms behind major geological systems</u> such as the Earth's crust and its oceans.
- In geology, igneous differentiation, or magmatic differentiation, is an umbrella term for the various processes by which <u>magmas undergo bulk</u> <u>chemical change during the partial melting process</u>, <u>cooling</u>, <u>emplacement</u>, or <u>eruption</u>. The sequence of magmas produced by igneous differentiation is known as a magma series.
- In magmatic differentiation differences in chemical composition are affected by several factors (i.e. Distinct melting events from distinct sources; Crystal fractionation; Mixing of 2 or more magmas; Assimilation/contamination of magmas by crustal rocks
- <u>This results in variation in the concentration of chemical mayor elements (in</u> particular Si), <u>and in the trace element concentrations</u>. Trace elements are elements that occur in low concentrations in rocks, usually less than 0.1 % (usually reported in units of parts per million, ppm).

Materials Properties, Use and Conservation:

Construction Materials and Binders

DIPARTIMENTO CIRCE

When considering the rocks in the mantle, trace elements can be divided into *incompatible elements*, those that do not easily fit into the crystal structure of minerals in the mantle, and *compatible elements*, those that do fit easily into the crystal structure of minerals in the mantle.

- <u>Incompatible elements</u> these are elements like K, Rb, Cs, Ta, Nb, U, Th, Y, Hf, Zr, and the *Rare Earth Elements* (REE)- La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, & Lu. Most have a large ionic radius. Mantle minerals like olivine, pyroxene, spinel, & garnet do not have crystallographic sites for large ions.
- <u>Compatible elements</u> these are elements like Ni, Cr, Co, V, and Sc, which have smaller ionic radii and fit more easily into crystallographic sites that normally accommodate Mg, and Fe.

When a mantle rock begins to melt, the incompatible elements will be ejected preferentially from the solid and enter the liquid. This is because if these elements are present in minerals in the rock, they will not be in energetically favorable sites in the crystals. As melting proceeds the concentration of these incompatible elements will decrease because (1) there will be less of them to enter the melt, and (2) their concentrations will become more and more diluted as other elements enter the melt.

Materials Properties, Use and Conservation:

Construction Materials and Binders

DIPARTIMENTO CIRCE

Periodic Table of Elements and Oxides for Petrologists																	
Atomic # Symbol Element						for Av ion (w) (pj Se	Average composition of oxide (weight percent) or element (ppm) in various rock types . See caption for sources. Average composition of oxide (weight percent) or element (ppm) in various reservoirs . See caption for sources See caption for sources								nce ide nula		
1 H 1.008		Atom	ic Wt.	with or	racter of bond h oxygen Formula												² He ^{4.003}
3	4	4 Be 9.012Links to other Periodic Tables5 B6 C7 N8 O9 F9.012• Royal Society of Chemistry Periodic Table • IUPAC Periodic Table of the Elements and Isotopes10.8112.01114.00715.99918.998														9	10
Li	Be															F	Ne
6.941	9.012															18.998	20.18
11 Na 22.990	¹² Mg _{24.305}	• 1	The Earth Michael I	Scientist Dayah Dy	entist's Periodic Table of the Elements and Their Ions h Dynamic Periodic Table											17 Cl 35.45	18 Ar 39.948
19	20	21	22	23	²⁴	²⁵	26	27	28	29	³⁰	³¹	³²	³³	³⁴	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.987	50.942	^{51.996}	54.938	55.845	58.933	58.693	63.546	65.38	69.723	72.630	74.922	_{78.971}	79.904	83.798
37	³⁸	³⁹	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.468	87.62	88.906	91.224	92.906	95.95	98	101.070	102.906	106.42	107.868	112.414	114.818	118.710	121.760	127.60	126.904	131.293
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.905	137.327		178.49	180.948	183.84	186.207	190.23	192.217	195.084	196.967	200.592	204.38	207.2	208.980	209	210	222
87 Fr 223	88 Ra 226	89-103	104 Rf 267	105 Db 268	106 Sg 269	107 Bh 270	108 Hs 269	109 Mt 278	110 Ds 281	${\mathop{\rm Rg}\limits_{_{280}}}$	¹¹² Cn ₂₈₅	113 Nh 286	114 Fl 289	¹¹⁵ Mc ²⁸⁹	116 Lv 293	117 Ts 294	118 Og 294
	RB Value	es	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	.1-100 wt ⁶	%	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	0-1000 pp	m	138.905	140. 116	140.908	144.242	145	150.36	151.964	157.25	158.925	162.500	164.930	167.259	168.934	173.045	174.967
0	.1-10 ppm	L	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
<	0.1 ppm		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
1	.a.		227	232.038	231.036	238.029	237	244	243	247	247	251	252	257	258	259	262

Abundance of the elements in various average volcanic rocks is shown as weight percent (wt.%=g per 100 g of rock) of the oxide for SiO2, TiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O, K2O, P2O5 or as parts per million (ppm=micrograms per g) for all other elements.

Materials Properties, Use and Conservation:

Construction Materials and Binders

TAS - Total Alkalis vs. Silica Variation Diagram. The TAS Diagram for volcanic rocks is used to classify igneous rocks using whole rock chemical data as adopted by the International Union of Geological Sciences (IUGS).

CENTRO PER I

DIAGNOSTICA . RILIEVO . TECNOLOGII

The variation diagram scatter plot of weight percent Na2O + K2O weight percent VS. SiO2 is divided into regions based on the whole rock chemistry rocks with of petrographicallydefine names (see the d QAPF diagram). The TAS diagram enables classification of glassy volcanic (i.e. pozzolans) and other volcanic rocks without, support or in to, petrographic data.

DIPARTIMENTO CIRCE

Materials Properties, Use and Conservation:

Construction Materials and Binders

CENTRO PER I BENI CUI TURALI

DIAGNOSTICA . RILIEVO . TECNOLOGIE

DIPARTIMENTO CIRCE

DI GEOSCIENZE

ale di Ricerc

lei Leganti Idraulici

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

The analysis of discriminant trace elements (or sometimes of ratio among discriminant trace elements) can help in the discrimination of volcanic domains. i.e. in this case, to distinguish Latian from Campania magmatic districs, based on the concentrations of Nb(Niobium)/Y(Yttrium) vs Zr(Zirconium)/Y(Yttrium)

DI PADOVA

Analytical techniques

Discriminant diagrams can report multiple traces (or ratios among traces) useful for discrimination, in this case a further discriminant diagram for distinguiscing Campanian Volcanoes from Latial ones is the Nb (*Niobium*)/Zr(*Zirconium*) vs Th (Thorium)/Ta(Tantalum) scatterplot

CENTRO PER I

DIAGNOSTICA . RILIEVO . TECNOLOGIE

DIPARTIMENTO CIRCE

dei Leganti Idraulici

Based on around 950 geochemical fingerprint of pyroclastic rocks from magmatic units of the Gulf of Naples \rightarrow in-detail intra-regional provenance Yb(Ytterbium) vs Th (Thorium) scatterplot

Based on around 950 geochemical fingerprint of pyroclastic rocks from magmatic units of the Gulf of Naples \rightarrow in-detail intra-regional provenance definition (Neodimium Vs Rubidium) 1

Eruptiv e event	unit	sample	type	Zr	Nb	Th	Rb	Sr	Y	Ва	La	Ce	Nd	U	Zn	Pr	Sm	Eu	Gd	Dy	Er	Yb	Lu	Та	V	referen ce
Post- NYT	fondo riccio	CF- FR-C2	bomb	229.2	33.2	22.8	309.6	919.8	33.4	1712.1	63.7	123.8	56.8	6.1	73	13.74	10.5	2.5	7.78	5.97	2.95	2.6	0.42	1.8	209	Cannat telli et al 2007
Post- NYT	fondo riccio	CF- FR-C1	scoria	233.2	35	22.1	274.8	903	32.5	1719.2	64.1	123.6	53.9	6.8	62	13.4	10.1	2.37	7.66	5.89	2.89	2.5	0.41	1.8	193	Cannat telli et al 2007
Post- NYT	Minop oli	CF- MI1-C1	scoria	182	26.7	18.1	238.5	946	28.7	1715.2	56	109.7	49.2	5.2	44	12.37	9.7	2.24	6.99	5.47	2.68	2.4	0.36	1.4	208	Cannat telli et al 2007
Post- NYT	Minop oli	CF- MI1-C2	scoria	267.9	42.1	29.7	305.1	724.7	32.1	1048.9	74.3	139.6	57	9	9	14.82	9.9	2.27	7.14	5.65	2.95	2.7	0.41	2.3	110	Cannat telli et al 2007
Post- NYT	Fondi di Baia		tephra	794.0	108.0	75.0	408.0	25.0	61.0	3.0	148.0	247.0	95.0	21.0		27.0	16.4	1.7	13.4	10.6	6.2	6.3	0.9	5.7		Smith et al 2011
Post- NYT	P.S. Nicola		tephra	504.0	66.0	46.0	328.0	331.0	41.0	221.0	103.0	171.0	70.0	12.1		20.0	12.7	2.0	10.4	7.5	4.3	4.6	0.7	3.6		Smith et al 2011
Post- NYT	Pisani 1		tephra	280.0	37.0	25.0	257.0	935.0	34.0	1625.0	68.0	122.0	55.0	7.8		15.0	10.9	2.2	9.0	6.8	3.4	3.2	0.5	2.1		Smith et al 2011
Post- NYT	Pisani 2		tephra	256.0	36.0	21.0	249.0	1007.0	30.0	1517.0	60.0	106.0	47.0	6.3		13.0	9.4	1.9	7.6	5.6	2.8	2.8	0.4	1.9		Smith et al 2011
Post- NYT	Pomici Princip ali		tephra	312.0	45.0	30.0	308.0	919.0	31.0	1779.0	72.0	124.0	52.0	9.1		15.0	9.9	2.1	8.1	6.0	2.8	2.9	0.4	2.3		Smith et al 2011
Post- NYT	S. Martin o	CFA81 a		465.0	54.0		309.0	437.0	22.0	326.0	76.0	165.0														Civetta et al 1991

DIPARTIMENTO CIRCE

Geochemical techniques

Main techniques used to determine the geochemical profile of volcanic rocks

- SEM-EDS (Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy): semi-quantitative major chemical element profiling (expeditious but not resolving for provenance determination)
- XRF (X-ray fluorescence): exact quantification in terms of percentages of major and trace chemical elements, useful for provenance determination but need enough sample quantity (at least 2 grams)
- LA-ICP-MS (laser ablation-inductively coupled plasma-mass spectrometry): extremely useful for very high precision quantification of major and trace chemical elements in volcanic rocks. It can be done punctually to map even extremely minute areals of material, even on individual minerals.

Case Studies

CENTRO PER I BENI CUI TURAL

The Punic-Roman town of Nora (Sardinia)

- Established by Phoenicians in the 8th c. BC become a Punic settlement during the 5th c. BC;
 - After the Roman conquest of Sardinia, in the 3rd c. AD Nora (and Sardinia) was involved in a flourishing period of renovation, with the construction of new temples, baths and an aqueduct;
 - The University of Padova (DBC) has ongoing excavation activities since 1990 (urban infrastructures, necropolis, private and public buildings)

DIPARTIMENTO CIRCE

CENTRO PER I Beni culturali

DIAGNOSTICA . RILIEVO . TECNOLOGIE

DIPARTIMENTO DI GEOSCIENZE CIRCE Centro Interdipa per lo Studio de

Analytical method: XRF (coarse clasts, more than 2 grams of material from each sample available for analysis)

	T.ROM_1	T.ROM_2	T.ROM_3	T.ROM_4	T.ROM_5	T.ROM_6	T.ROM_7	T.ROM_11	T.ROM_20	
%Ox	tuff	pumice	tuff							
SiO ₂	59.31	60.29	60.89	60.82	60.53	61.71	60.5	60.07	62.07	
TiO,	0.48	0.47	0.49	0.53	0.46	0.44	0.47	0.45	0.44	
Al,0,	18.29	18.55	18.45	18.30	18.38	18.26	18.89	18.41	17.75	
Fe ₁ O ₁	3.88	3.67	3.51	3.59	3.44	3.18	3.71	3.47	3.17	
MnO	0.15	0.15	0.17	0.17	0.15	0.18	0.13	0.14	0.16	
MgO	1.27	0.39	0.14	0.24	0.33	0.09	0.29	0.27	0.92	
CaO	1.94	2.61	2.17	2.88	2.41	1.99	2.55	2.67	2.97	
Na ₂ O	4.11	4.91	5.42	5.68	5.26	5.94	4.63	4.94	2.95	
K,0	9.30	8.00	7.63	7.41	8.01	7.15	8.52	8.23	9.25	
P.O.	0.27	0.08	0.05	0.05	0.07	0.03	0.09	0.07	0.08	
Tot	99.00	99.12	98.92	99.67	99.04	98.97	99.78	98.72	99.76	
L.O.I.	14.97	4.96	3.55	3.76	3.48	2.34	3.38	3.27	11.71	
ppm										
S	169	137	38	126	76	63	56	95	145	
Sc	3	<3	3	13	11	<3	3	<3	3	
v	62	50	26	32	38	18	49	45	38	
Cr	6	<6	4	<6	7	<6	5	<6	12	
Со	3	9	<3	6	6	<3	<3	6	<3	
Ni	5	<3	<3	<3	<3	<3	<3	<3	<3	
Cu	33	9	17	217	143	24	24	31	10	
Zn	103	102	100	106	126	109	89	411	81	
Ga	12	18	13	14	14	17	10	12	13	
Rb	362	390	436	440	411	478	381	392	366	
Sr	223	203	127	81	110	45	278	152	196	
Y	30	45	63	65	49	73	37	43	50	
Zr	386	550	763	779	610	956	517	528	660	
Nb	52	67	94	101	77	113	65	64	86	
Ва	766	104	122	35	46	21	182	73	231	
La	81	102	122	132	108	161	97	93	118	
Ce	161	204	252	267	220	323	196	193	238	
Na	60	/3	103	105	82	110	/2	/1	8/	
PD	/5	/1	62	62	55	50	62	53	49	
1 n	43	49	/2	/4	50	89	50	52	6/	
U	× ×	16	22	20	18	26	14	15	16	

CENTRO PER I Beni cuiturai

UNIVERSITÀ

DI PADOV

DIPARTIMENTO CIRCE

Analytical method: XRF (coarse clasts, more than 2 grams of material from each sample available for analysis)

CENTRO PER I Beni cuiturai

DIAGNOSTICA , RILIEVO , TECNOLOGIE

B

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

DIPARTIMENTO CIRCE

dei Leganti Idraulici

DI GEOSCIENZE

Materials Properties, Use and Conservation:

Construction Materials and Binders

Full compatibility with pyroclastic products of the Gulf of Naples, in particular with the late eruptions of Phlegraean Fields (post-NYT, along the coastline of the Gulf of Naples)

UNIMOR

UNIVERSITÀ DELLA CALABRIA

BENI CULTURA

DIAGNOSTICA BULIEVO TECNOLOG

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

DIPARTIMENTO CIRCE

DI GEOSCIENZE

terials Properties, Use and Conservation:

Construction Materials and Binders

Aquileia (Friuli Venezia Giulia)

DIPARTIMENTO CIRCE

- Established as colonia latina in 181 bC
- During the Imperial age was enriched by construction of theatre, amphitheater, circus
- In 4th-c. AD was celebrated as one of the most prestigious centers in Roman world
- In 5th-c AD falled against Attila invasion
- Reconquered by Byzantium in 6th-c. AD
- Progressively abandoned since the 7th-c. AD

Materials Properties, Use and Conservation: Construction Materials and Binders

dBC

Aquileia – Theatre (beginning 1st c AD)

CENTRO PER I Beni cui turai

DIAGNOSTICA , RILIEVO , TECNOLOGII

DIPARTIMENTO CIRCE

NIVERSITÀ

DEGLI STU

DI PADOVA

Aquileia – Theatre (beginning 1st c AD)

CENTRO PER I

DIPARTIMENTO CIRCE

Aquileia – Theatre (beginning 1st c AD)

CENTRO PER I Beni culturali

DIAGNOSTICA . RILIEVO . TECNOLOGII

DIPARTIMENTO CIRCE

lei Leganti Idraulici

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

Analytical method (trace elements): LA-ICP-MS Materials Properties, Use and Conservation: Construction Materials and Binders

Lagoon of Venice – TSF (1st c AD)

Roman water-tank (weel cistern type) buried in underwater environment in the lagoon of Venice, dated to the Roman Imperial Age (1st – 2nd c. CE)

Lagoon of Venice – TSF (1st c AD)

Conclusive remarks

tale di Ricerr

DIAGNOSTICA . RILIEVO . TECNOLOGIE

i Materiali Cementizi dei Leganti Idraulici

DI GEOSCIENZE

DI PADOVA

Construction Materials and Binders

Conclusive remarks

- These **provenance studies** are extremely helpful in tracking the trading of materials, in this case particular building materials, in antiquity.
- Obviously, this is only the first step: the archaeometrical analysis makes it possible to verify the provenance in many cases (or to narrow the field of possible provenances) of pozzolanic material, but from this point it is important to contextualize the data in relation to a precise historical, historical-economic, historical-cultural framework: this is the archeological component, which must explain and motivate certain commercial choices, with dynamics of shifting workers, technological choices required by clients
- \rightarrow Transition to the realm of pure archeology.

Bibliographic references

Use of volcanic pozzolans in antiquity

- Lancaster L.C. 2021, Mortars and plasters How mortars were made. The literary sources, in Mortars, plasters and pigments 2021, 192.
- Lancaster L.C. 2019, Pozzolans in Mortar in the Roman Empire: An Overview and Thoughts on Future Work, in I.F. Ortega, S. Bouffier (dir.), Mortiers et hydraulique en Méditerranée antique, Archéologies Médi-terranéennes 6, Aix-en-Provence, 31-39.
- Dilaria S., Secco M. 2022, Mortar recipes through the ages. A brief review of data from Prehistory to Late Antiquity, Archaeology and Science, 18, 133-126.

Geochemistry of Plio-Quaternary Vulcanism in italy

DIPARTIMENTO CIRCE

• Peccerillo A. 2005, Plio-Quaternary Volcanism in Italy: Petrology, Geochemistry, Berlin.

Case studies

DI PADOV

- Dilaria S., Previato C., Bonetto J., Secco M., Zara A., De Luca R., Miriello D. 2023, Volcanic pozzolan from the Phlegraean Fields in the structural mortars of the Roman Temple of Nora (Sardinia), Heritage 6, 567–587.
- Dilaria S., Ghiotto A.R., Secco M., Furlan G., Giovanardi T., Zorzi F., Bonetto J. 2023, Early exploitation of Neapolitan pozzolan (*pulvis puteolana*) in the Roman theatre of Aquileia, Northern Italy, Scientific Reports, 13, 4110.

Materials Properties, Use and Conservation: Construction Materials and Binders

THANK YOU FOR YOUR **ATTENTION!**

