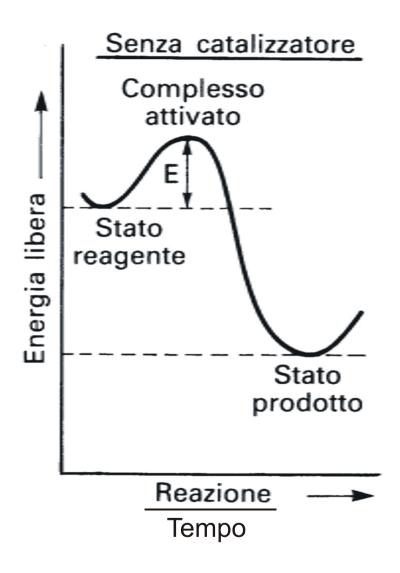


Le rocce e la loro età

Perché si formano le rocce?


Stato iniziale (Ti, Pi, ti) → equilibrio
↓
nessuna tendenza a trasformarsi
energia libera **minima**

Cambiano le condizioni ambientali

Variazioni delle condizioni del sistema

- → perturbazioni piccole
- → perturbazioni grandi

Genesi di una roccia

a determinate condizioni *fisiche* ambientali a partire da un determinato sistema *chimico*

varietà di <u>sistemi chimici</u>
varietà di condizioni fisiche <u>ambientali</u>

varietà di varietà di rocce

condizioni fisiche <u>ambientali</u> in termini di T, P, ecc.

Roccia: prodotto di minima energia libera di un dato sistema chimico in date condizioni ambientali un dato momento geologico

minima energia { minima tendenza a modificarsi sistema in "riposo"

equilibrio { stabile metastabile instabile

Chi studia le rocce?

Geologia: si occupa della ricostruzione della **storia della Terra** attraverso l'indagine della successione degli eventi fisici, chimici e biologici registrati nelle rocce.

Petrografia: studia e classifica le rocce in termini di strutture, tessiture e mineralogia.

Petrologia: studia la genesi e le modalità evolutive dei tipi di rocce

petrologia del magmatico

petrologia del metamorfico

petrologia del sedimentario

Lo studio delle rocce in geologia

1 2 3 4

osservazioni di campagna analisi e classificazion e delle rocce

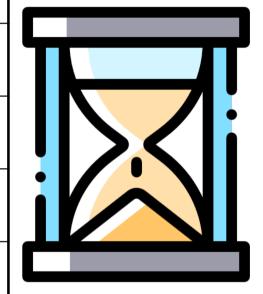
- principi di Chimica Fisica
- applicazione dei risultati della petrologia sperimentale
- applicazione delle conoscenze sui rapporti fra processi petrogenetici e processi geologici

interpretazion e del significato geologico delle rocce e delle loro associazioni

RILEVAMENTO GEOLOGICO-PETROGRAFICO **PETROGRAFIA**

PETROLOGIA

GEOLOGIA

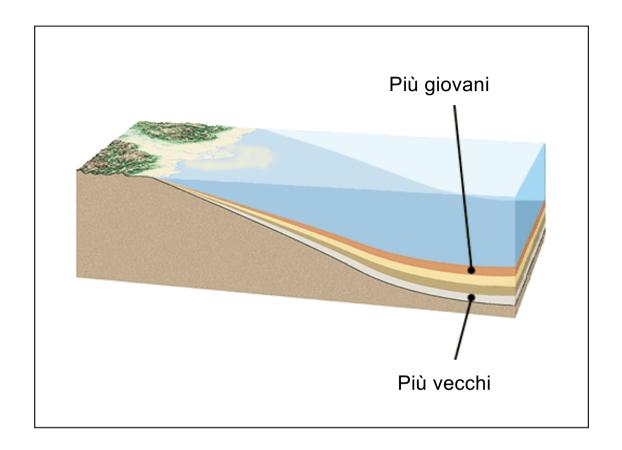

Tempo geologico: tempo intercorso tra la formazione della Terra e il presente; serve per dare un ordine agli eventi geologici.

Tempo geologico: astrazione, mentre la successione degli eventi registrata nelle rocce ne rappresenta la reale manifestazione.

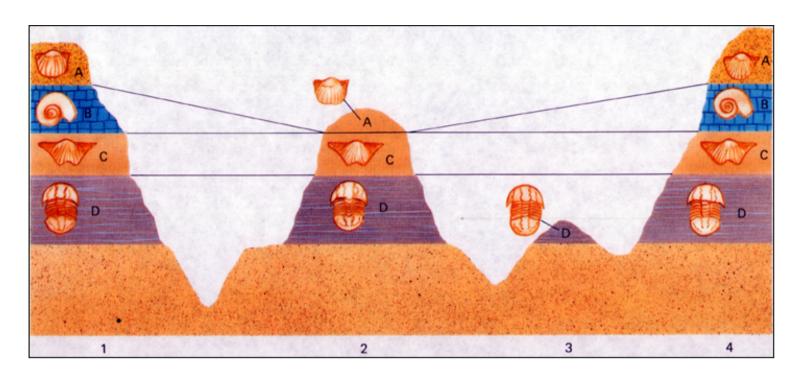
Tempo geologico assoluto: misura in anni del tempo trascorso da un evento geologico fino ad oggi

→ utilizzo delle datazioni radiometriche, che si basano su decadimento dei nuclidi di alcuni isotopi instabili di certi elementi

Genitore	Figlio	Tempo di dimezzamento	Intervallo di datazione	Materiali datati
Rb ⁸⁷	Sr ⁸⁷	47 miliardi	10 milioni - 4.6 miliardi	Ignee- Metamorfiche
U ²³⁸	Pb ²⁰⁶	4.5 miliardi	10 milioni - 4.6 miliardi	Ignee- Metamorfiche
U ²³⁵	Pb ²⁰⁸	713 milioni	10 milioni - 4.6 miliardi	Ignee- Metamorfiche
K ⁴⁰	Ar ⁴⁰	1.3 miliardi	100,000 - 4.6 miliardi	Ignee- Metamorfiche
C14	N ¹⁴	5730 anni	100 to 100,000	Materiali contenenti C


Tempo geologico relativo: successione degli eventi geologici in ordine di tempo

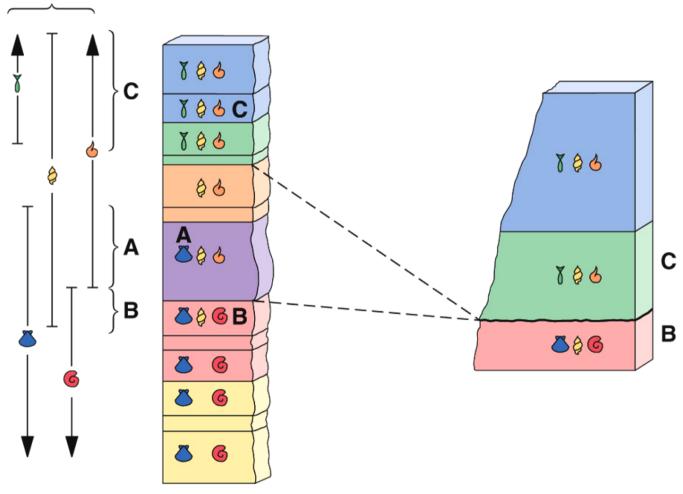
→ si basa sull'osservazione delle relazioni tra le diverse unità di rocce

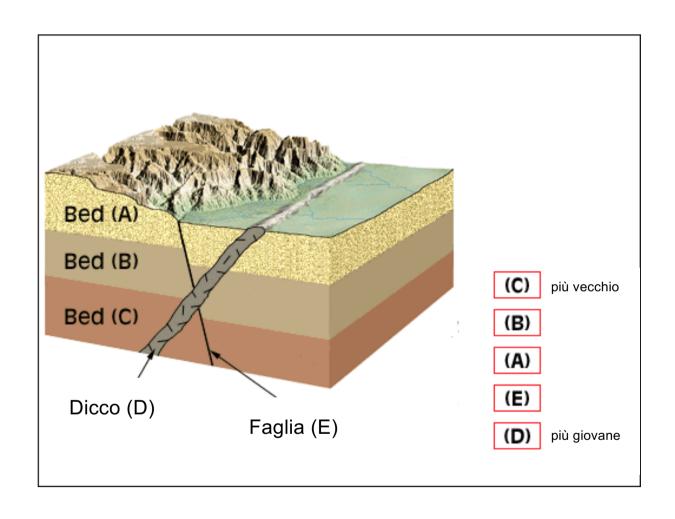

Datazione relativa si basa su principi quali:

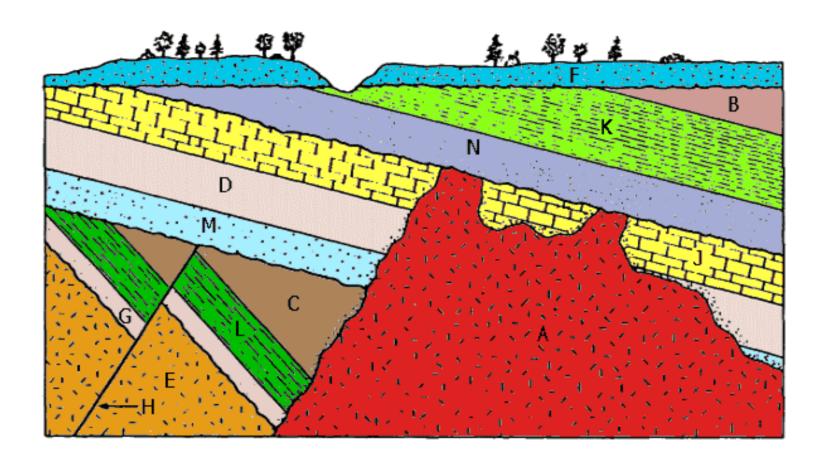
- *Uniformitarianismo*: se si vuole ricostruire una situazione del passato di cui oggi vediamo gli effetti bisogna ricomporla tramite le leggi ed i processi che operano attualmente
- Orizzontalità degli strati: i sedimenti si depositano in giacitura orizzontale
- **Sovrapposizione**: le rocce più recenti stanno al di sopra di quelle più antiche sottostanti (in assenza di eventi tettonici)
- Relazioni di intersezione: lo strato intersecato è più antico di quello che taglia
- Inclusioni: l'incluso è più antico delle roccia circostante
- Successione di organismi fossili: gli organismi si succedono uno dopo l'altro secondo un pattern temporale
- **Disconformità/Discontinuità**: rappresenta una lacuna temporale nel record fossile

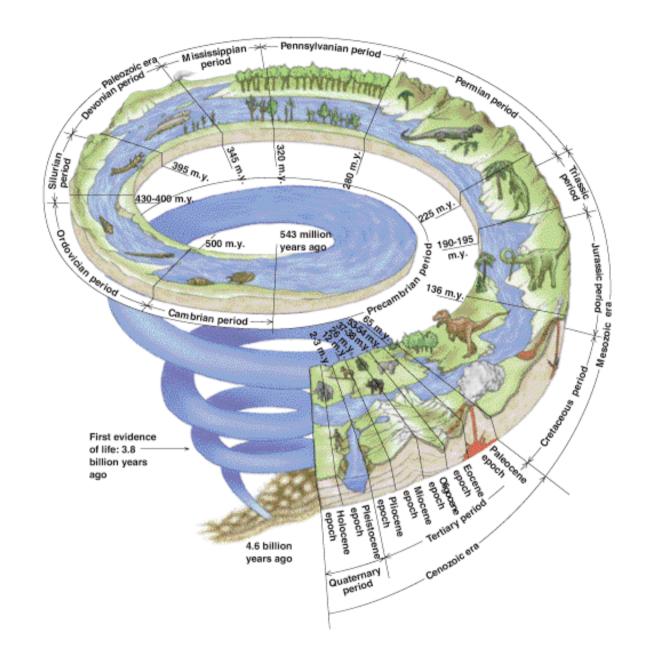
1. Principio di sovrapposizione di Stenone

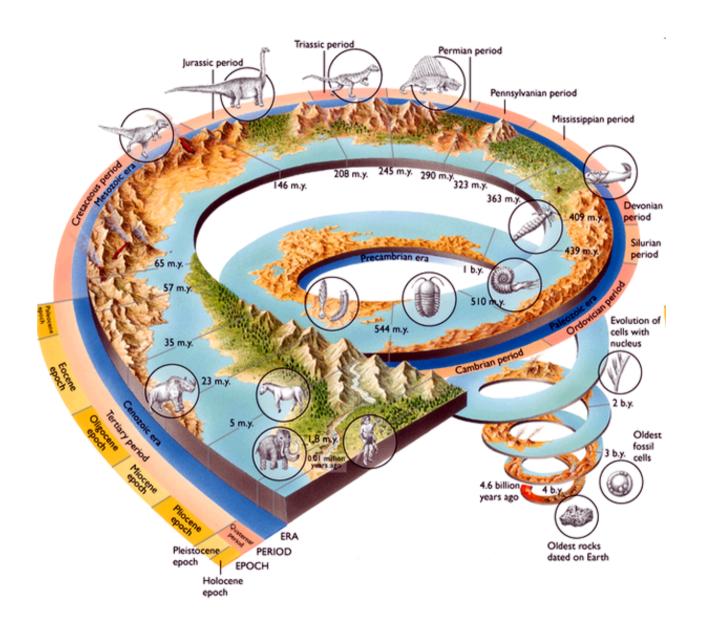
ricostruisce la successione dei fenomeni in ragione ai loro rapporti di sovrapposizione, per cui lo strato più antico sta alla base, o sotto, e lo strato più giovane sta sopra. Le eccezioni sono dovute da fattori tettonici, quali il sollevamento delle catene montuose.

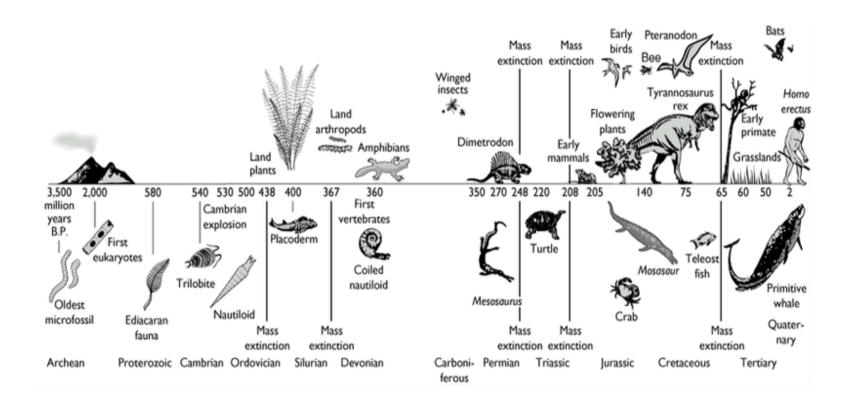



2. principio di successione faunistica di William Smith

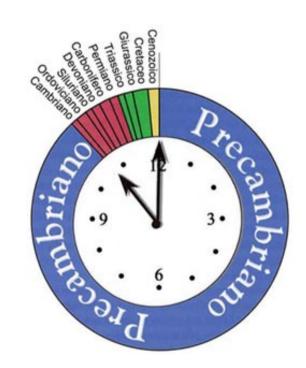

si basa sull'analisi del contenuto fossilifero: strati contenenti fossili uguali, anche se provenienti da regioni diverse, hanno la stessa età, si sono cioè formati contemporaneamente.


Fossile guida: usati nelle datazioni relative per la loro ampia distribuzione geografica, facilmente rinvenibilità e rapida evoluzione (esistenza molto limitata → elevata precisione nella datazione).


Disconformità/Discontinuità: lacuna temporale del record fossile



Successione faunistica

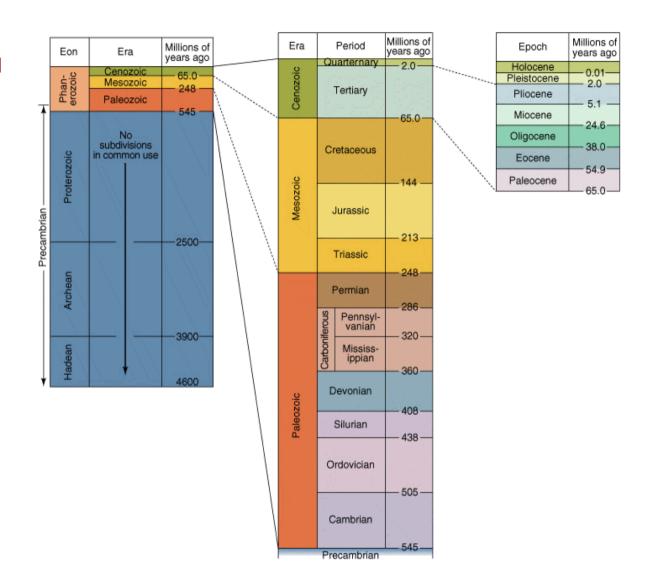


Geological Time Scale

	RELA	TIVE GEOLOGIC	CTIME	Time	
	Era	Period	Epoch	in millions of years before present	Time of Appearance of differnet forms of life
		Quaternary	Holocene	0.011	Historic Record in california, ~250 years Post-glacial period
		,	Pleistocene	1.6	Ice age, evolution of modern man
mals			Pliocene	5.3	Age of mammoths
Age of Mammals	Cenozoic		Miocene	23.7	Spread of anthropoid apes
Age (Tertiary	Oligocene	36.6	Origin of more modern families of mammals, grazing animals
			Eccene		Origin of many modern families of mammals, giant mammals
			Paleocene	66.4	Origin of most orders of mammals, early horses
ptiles		Cretaceous		144	Appearance of flowering plants, extinction of dinosaurs
Age of Reptiles	Mesozoic	Jurassic		208	Appearance of some modern genera of conifers
өбү		Triassic		245	Dominance of mamml-like reptiles
270		Permian		286	Appearance of modern insect orders
		Carboniferious		320	Dominance of amphibians and primative tropical forest
58				360	Earliest amphibians
tebrat	Paleozoic	Devonian		408	Earliest seed plants, rise of bony fishes
of Invertebrates		Siturian		438	Earliest land plants
Ageo		Ordovician		505	Earliest know vertebrates
		Cambrian		570	Appearance of most phyla of invertebrates
	Precambr	Precambrian		10 70303943	Origin of algae, worms and other crawlers
			33	4500	Estimated age of the Earth

Modified from Geological Society of America, 1983

Era	Drocombriano	Paleozoico				Mesozoico			Cenozoico		,		
Periodo	Precambriano		Ordoviciano	Siluriano	Devoniano	Carbonifero	Permiano	Triassico	Giurassico	Cretaceo	Paleogene	Neogene	Π,
Milioni di anni		590	500	435	410	355	295	250	203	135	65	24	1,8
												j	Oloce
	O A J G C C									ine (0,1) tocene			



Scala cronostratigrafica – scala geocronologica

Unità cronostratigrafica: spessore di roccia formatasi in un determinato intervallo di tempoUnità geocronologica: l'intervallo di tempo in cui si sono formate successioni di strati rocciosi

UNITA' CRONOSTRATIGRAFICHE	UNITA' GEOCRONOLOGICHE	esempio
EONOTEMA	EONE	FANEROZOICO
ERATEMA	ERA	CENOZOICO
SISTEMA	PERIODO	NEOGENE
SERIE	EPOCA	MIOCENE
PIANO	ETA'	MESSINIANO

Scala cronostratigrafica

Eoni
Ere
Periodi
Epoche

La suddivisione non è in intervalli di tempo uguali, ma si basa su importanti cambiamenti registrati dalle rocce

Eon	Era	Period	Epoch	Му											
		Quaternary	Holocene												
		Quuternary	Pleistocene	_1.5											
	o i c		Pliocene	1.5											
	e n o z o i		Miocene												
	Cer	Tertiary	Oligocene												
ပ			Eocene												
anerozoic			Paleocene	- 6 5											
0 7	oic	Cretaceous													
ane	SOS	Jurassic													
P P	ozoic <mark>Me</mark>	ozoic <mark>Me</mark>	ozoic Me	ozoic Me	Me	ozoic Me	ozoic Me	Triassic		-250					
								zoic	Permian						
									zoic	zoic	zoic	zoic	Pennsylvanian Garage Mississippian		
													zoio	zoic	mississippian Mississippian
								Devonian							
	Ра	Silurian													
		Ordovician													
		Cambrian		- 540											
Preca	ambria	Proteroz	o i c	2500											
		Archean		4500											

Eone: unità geocronologica di categoria superiore

Il limite tra un eone e il successivo viene posto in corrispondenza di un cambiamento fondamentale nella storia degli organismi viventi.

Fanerozoico (545 Ma - presente): per lo più rocce sedimentarie e la storia della vita

Precambrian

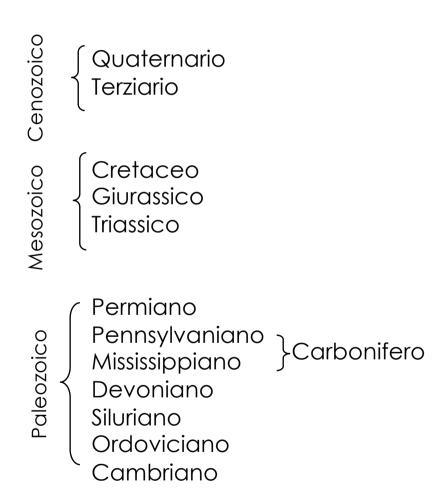
Proterozoico (tra 2500 e 545 Ma): soprattutto rocce cristalline

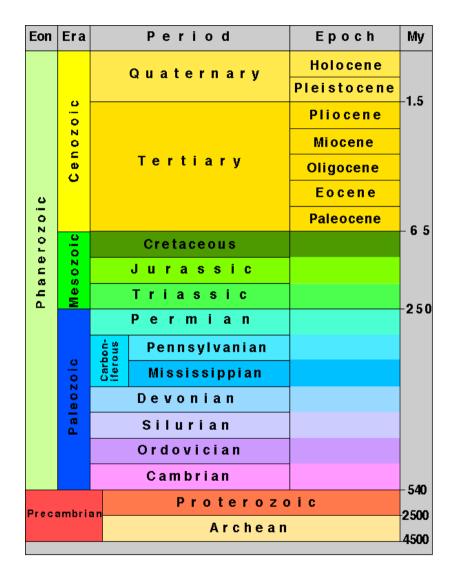
Archeano o Criptozoico (tra 3800 e 2500 Ma): le rocce più vecchie

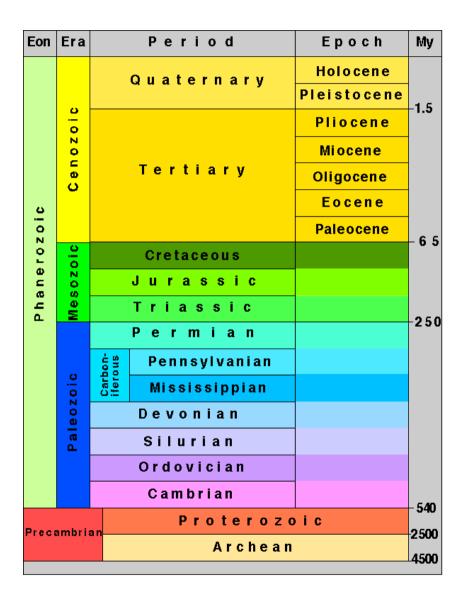
Adeano o Azoico (prima di 3800 Ma): nessun record geologico

Era: nelle ere più recenti, è normalmente compresa tra due estinzioni di massa

Fanerozoico: 3 ere


Cenozoico (vita recente) 65 myBP-present

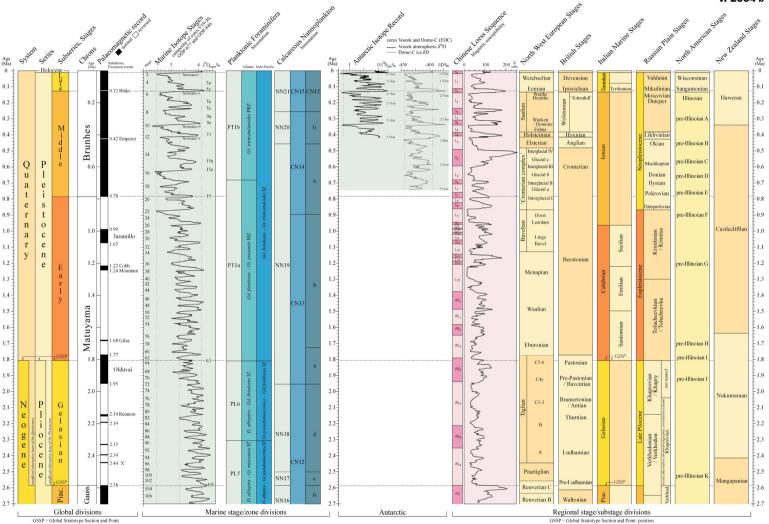

Mesozoic Era (middle life) 250-65 myBP


Paleozoic Era (ancient life) 544-250 myBP

Eon	Era	Period	Epoch	Му									
		Quaternary	Holocene										
			Pleistocene	-1.5									
	o i c		Pliocene	1.5									
	z 0 u		Miocene										
	Cer	Tertiary	Oligocene										
၁			Eocene										
z o i			Paleocene	- 6									
0	sozoic	Cretaceous											
ane		2 O S	0 Z	Jurassic									
P h	Me	Triassic		-25									
	aleozoic	Permian		-23									
		oic	roic	Pennsylvanian Mississippian									
				oio	o i o	zo i c	0 0 1	0.01	0.0	0.0	o i o	o i o	Mississippian
		Devonian											
	Pal	Silurian											
			Ordovician										
		Cambrian		- 540									
Prece	ambria	Proteroz	o i c	250									
		Archea	n	450									

Periodo: tra un periodo e il successivo si registra un'estinzione in alcuni ordini del regno animale

Epoca: tra le varie epoche si registrano importanti cambiamenti negli organismi superiori


EONOTHEM / EON	ERATHEM / ERA	SYSTEM, SUBSYSTEM /	PERIOD, SUBPERIOD	SERIES / EPOCH	Age estimates of boundaries in mega-annum (Ma) unless otherwise noted
		any	(a)	Holocene	11,477 ±85 yr
		Quat	-	Pleistocene	1.806 ±0.005
				Pliocene	5.332 ±0.005
	Cenozoic (Gr)	ε	Neogene (N)	Miocene	
	Ö	Tertiary (T)		Oligocene	23.03 ±0.05
		Ĭ,	(R)	Eocene	33.9 ±0.1
			Pale	Paleocene	55.8 ±0.2 65.5 ±0.3
		sno		Upper / Late	30.0 20.0
	(9%)	Cretaceou	E)	Lower / Early	99.6 ±0.9
				Upper / Late	140.0 14.0
U	Mesozoic (Mr)	Jurassic	ව	Middle	161.2 ±4.0 175.6 ±2.0
Phanerozoic		Í		Lower / Early	199.6 ±0.6
Pha		sic		Upper / Late	228.0 ±2.0
		Trias	E	Middle	245.0 ±1.5
				Lower / Early	251.0 ±0.4
		_		Lopingian	260.4 ±0.7
		ermia	(B)	Guadalupian	270.6 ±0.7
				Cisuralian	299.0 ±0.8
			anian	Upper / Late	306.5 ±1.0
		0	nsylva (P)	Middle	311.7 ±1.1
		Carboniferous (C)	Pen	Lower / Early	318.1 ±1.3
		rbonife	nian	Upper / Late	326.4 ±1.6
	€	3	(M)	Middle	345.3 ±2.1
	Paleozoic (Pt)		Miss	Lower / Early	359.2 ±2.5
	aleoz	an		Upper / Late	385.3 ±2.6
	<u> </u>	evonia	0	Middle	397.5 ±2.7
		_		Lower / Early Pridoli	416.0 ±2.8 418.7 ±2.7
		rian	(S)	Ludlow	422.9 ±2.5
		Silur	8)	Wenlock	428.2 ±2.3
		- LE		Upper / Late	443.7 ±1.5
		dovice	0	Middle	460.9 ±1.6 471.8 ±1.6
		p.O.u		Lower / Early	488.3 ±1.7
		5		Upper / Late	501.0 ±2.0

EONOTHEM / EON	ERATHEM / ERA	SYSTEM / PERIOD	Age estimates of boundaries in mega-annum (Ma) unless otherwise noted
		Ediacaran	630
	Neoproterozoic (Z)	Cryogenian	850
	Neopu	Tonian	
(E)	ic (W)	Stenian	1000
rozoi	oterozo	Ectasian	1200
Proterozoic (P)	Mesoproterozoic (Y)	Calymmian	1400
		Statherian	1600
	rozoic (X)	Orosirian	1800
	Paleoproterozoic (X)	Rhyacian	2300
		Siderian	
	chean		2500
	Neoar		2800
(A)	Archean (A) Eoardhean Mesoardhean Neoardhean		2200
Archean			3200
	Pale		3600
	Eoarchean		
			~4000
Hadean (pA)			

Figure 1. Divisions of Geologic

ERA	PERIODO	EPOCA	MILIONI diannifa
	QUATERNARIO	OLOCENE PLEISTOCENE	0,01 1,8
CENOZOICO	TERZIARIO	PLIOCENE MIOCENE OLIGOCENE EOCENE PALEOCENE	5 26 37 53 65
MESOZOICO	CRET GIURA	144	
	TRIAS	260	
	PERM	286	
	CARBO	360	
	DEVO		
PALEOZOICO	SILUF	408	
	ORDOV	438	
	CAMB	505	
	OAMB		540
P			
	2500		

Global chronostratigraphical correlation table for the last 2.7 million years

